首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
本文对双曲-抛物偏微分方程奇异摄动问题构造了一个指数型拟合差分格式.我们不仅在方程中加了一个拟合因子,而且在逼近第二个初始条件时也加了拟合因子.我们利用问题的渐近解证明了差分格式关于小参数的一致收敛性.  相似文献   

2.
二阶椭圆型偏微分方程奇异摄动问题的差分解法   总被引:1,自引:0,他引:1  
近十多年来出现了一系列奇异摄动问题的数值解法,例如C.E.Pearson,F.W.Door,H.O.Kreiss,A.M.,K.B.等人的工作,他们大都对常微分方程和常微分方程组奇异摄动问题来讨论的。 苏煜城、吴启光在1980年用差分方法讨论了椭圆——抛物偏微分方程的奇异摄动问  相似文献   

3.
本文在矩形域内考虑高阶导数项含有小参数的自共轭椭圆型第一边值问题. 本文,我们应用渐近分析方法建立了一种新的差分格式,比较了差分方程的解与微分方程的解的渐近性态,并证明了解的一致收敛性.  相似文献   

4.
本文讨论抛物型偏微分方程奇异摄动问题,通常,为了使边界层的特性不致丧失,在边界层附近必须减小网格,当网格足够小时需要很大的运算量。我们提出边界层格式,在边界层附近不必取很细的网格,数值例子表明采用中等步长即可满足精度。  相似文献   

5.
本文对一类四阶常微分方程边值问题建立了二阶一致精度的差分格式.本格式对步长h具有O(h2)阶的精度,大大改进了[1]的结果.  相似文献   

6.
§1.引言 用差分法解微分方程的各种问题,最终都归结为相应差分方程的求解问题。如果微分方程是线性的,则相应的差分方程是线代数方程组;在相反的情况下,差分方程一般为非线性代数或超越方程组。 对线性情形,椭圆差分方程的求解问题十分重要。因为第一、由椭圆微分方程导出  相似文献   

7.
本文讨论奇异摄动椭圆抛物型偏微分方程的周期边界问题.构造一个差分格式,利用分离解的奇性项的方法,结合问题的渐近展开,证明所构造的差分格式具有O(τ h~2)一致收敛阶.  相似文献   

8.
本文考察了椭圆一双曲型偏微分方程奇异摄动问题(1.1),证明了迎风差分格式在一特殊的非均匀网格上是一阶一致收敛的.最后给出了一些数值结果.  相似文献   

9.
四阶常微分方程奇异摄动问题的二阶精度分解法   总被引:2,自引:1,他引:1  
  相似文献   

10.
双曲-抛物型偏微分方程奇摄动混合问题的数值解法   总被引:1,自引:0,他引:1  
构造了二阶双曲—抛物型方程奇摄动混合问题的差分格式,给出了差分解的能量不等式,并证明了差分解在离散范数下关于小参数一致收敛于摄动问题的解。  相似文献   

11.
给出了一类带有时滞的偏微分方程.该方程描述得是含有非局部和时滞边界条件的分布参数系统.运用泛函分析和积分方程的理论,证明了方程解的存在唯一性,得到解的解析表达式.  相似文献   

12.
吴启光 《应用数学和力学》1989,10(12):1033-1039
本文对含小参数的差分方程奇异摄动问题构造了一种新的渐近方法.  相似文献   

13.
14.
Uskov  V. I. 《Mathematical Notes》2022,111(5-6):932-939
Mathematical Notes - We consider the initial-boundary value problem for a third-order partial differential equation with highest mixed derivative. An abstract Cauchy problem for a first-order...  相似文献   

15.
定义了再生核空间,在再生核空间中给出了一类带初、边值条件的非线性偏微分方程的数值解法,并给出了算法实例.  相似文献   

16.
一类时间分数阶偏微分方程的解   总被引:2,自引:2,他引:0  
考虑一类时间分数阶偏微分方程,该方程包含几种特殊情况:时间分数阶扩散方程、时间分数阶反应-扩散方程、时间分数阶对流-扩散方程以及它们各自相对应的整数阶偏微分方程. 通过Laplace-Fourier变换及其逆变换,该方程在空间全平面和半平面内的基本解可以求出,但其表达式则是通过适当的变形来求.另外,对于有限域上的初边值问题,则可由Sine(Cosine)-Laplace变换导出该方程的一种级数形式的解,并通过两个数值例子来说明该方法的有效性.  相似文献   

17.
《随机分析与应用》2013,31(4):923-938
Abstract

A physical model is described which justifies the appearance of a stochastic term in the two-dimensional Navier–Stokes equations. In this model, a linear oppositional control term accrues as well. The resulting stochastic partial differential equation is shown to have a unique stationary solution.  相似文献   

18.
A customary, heuristic, method, by which the Poisson integral formula for the Dirichlet problem, for the half space, for Laplace's equation is obtained, involves Green's function, and Kelvin's method of images. Although this heuristic method leads one to guess the correct result, this Poisson formula still has to be verified directly, independently of the method by which it was arrived at, in order to be absolutely certain that a solution of the Dirichlet problem for the half space, for Laplace's equation, has been actually obtained. A similar heuristic method, as seems to be generally known, could be followed in solving the Dirichlet problem, for the half space, for the equation where is a real constant. However, in Part 1, a different, labor-saving, method is used to study Dirichlet problems for the equation. This method is essentially based on what Hadamard called the method of descent. Indeed, it is shown that he who has solved the half space Dirichlet problem for Laplace's equation has already solved the half space Dirichlet problem for the equation In Part 2, the solution formula for the quarter space Dirichlet problem for Laplace's equation is obtained from the Poisson integral formula for the half space Dirichlet problem for Laplace's equation. A representation theorem for harmonic functions in the quarter space is deduced. The method of descent is used, in Part 3, to obtain the solution formula for the quarter space Dirichlet problem for the equation by means of the solution formula for the quarter space Dirichlet problem for Laplace's equation. So that, indeed, it is also shown that he who has solved the quarter space Dirichlet problem for Laplace's equation has already solved the quarter space Dirichlet problem for the " equation" For the sake of completeness and clarity, and for the convenience of the reader, the appendix, at the end of Part 3, contains a detailed proof that the Poisson integral formula solves the half space Dirichlet problem for Laplace's equation. The Bibliography for Parts 1,2, 3 is to be found at the end of Part 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号