共查询到20条相似文献,搜索用时 15 毫秒
1.
Yi-Zheng Fan 《Czechoslovak Mathematical Journal》2007,57(4):1215-1222
Let G be a mixed graph. The eigenvalues and eigenvectors of G are respectively defined to be those of its Laplacian matrix. If G is a simple graph, [M. Fiedler: A property of eigenvectors of nonnegative symmetric matrices and its applications to graph
theory, Czechoslovak Math. J. 25 (1975), 619–633] gave a remarkable result on the structure of the eigenvectors of G corresponding to its second smallest eigenvalue (also called the algebraic connectivity of G). For G being a general mixed graph with exactly one nonsingular cycle, using Fiedler’s result, we obtain a similar result on the
structure of the eigenvectors of G corresponding to its smallest eigenvalue.
Supported by National Natural Science Foundation of China (10601001), Anhui Provincial Natural Science Foundation (050460102),
NSF of Department of Education of Anhui province (2004kj027), the project of innovation team on basic mathematics of Anhui
University, and the project of talents group construction of Anhui University. 相似文献
2.
Manu Basavaraju 《Discrete Mathematics》2008,308(24):6650-6653
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and it is denoted by a′(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using five colors. This result is tight since there are 3-regular graphs which require five colors. In this paper we prove that any non-regular connected graph of maximum degree 3 is acyclically edge colorable using at most four colors. This result is tight since all edge maximal non-regular connected graphs of maximum degree 3 require four colors. 相似文献
3.
4.
Shilin Wang 《Linear and Multilinear Algebra》2013,61(2):197-204
We give complete information about the signless Laplacian spectrum of the corona of a graph G 1 and a regular graph G 2, and complete information about the signless Laplacian spectrum of the edge corona of a connected regular graph G 1 and a regular graph G 2. 相似文献
5.
Manu Basavaraju 《Discrete Mathematics》2009,309(13):4646-649
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic (2-colored) cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a′(G). Let Δ=Δ(G) denote the maximum degree of a vertex in a graph G. A complete bipartite graph with n vertices on each side is denoted by Kn,n. Alon, McDiarmid and Reed observed that a′(Kp−1,p−1)=p for every prime p. In this paper we prove that a′(Kp,p)≤p+2=Δ+2 when p is prime. Basavaraju, Chandran and Kummini proved that a′(Kn,n)≥n+2=Δ+2 when n is odd, which combined with our result implies that a′(Kp,p)=p+2=Δ+2 when p is an odd prime. Moreover we show that if we remove any edge from Kp,p, the resulting graph is acyclically Δ+1=p+1-edge-colorable. 相似文献
6.
7.
On edge domination numbers of graphs 总被引:1,自引:0,他引:1
Baogen Xu 《Discrete Mathematics》2005,294(3):311-316
Let and be the signed edge domination number and signed star domination number of G, respectively. We prove that holds for all graphs G without isolated vertices, where n=|V(G)|?4 and m=|E(G)|, and pose some problems and conjectures. 相似文献
8.
9.
An induced matching of a graph G is a matching having no two edges joined by an edge. An efficient edge dominating set of G is an induced matching M such that every other edge of G is adjacent to some edge in M. We relate maximum induced matchings and efficient edge dominating sets, showing that efficient edge dominating sets are maximum induced matchings, and that maximum induced matchings on regular graphs with efficient edge dominating sets are efficient edge dominating sets. A necessary condition for the existence of efficient edge dominating sets in terms of spectra of graphs is established. We also prove that, for arbitrary fixed p≥3, deciding on the existence of efficient edge dominating sets on p-regular graphs is NP-complete. 相似文献
10.
11.
In this paper,we prove that 2-degenerate graphs and some planar graphs without adjacent short cycles are group(Δ(G)+1)-edge-choosable,and some planar graphs with large girth and maximum degree are groupΔ(G)-edge-choosable. 相似文献
12.
Let G(V, E) be a graph. A k-adjacent vertex-distinguishing equatable edge coloring of G, k-AVEEC for short, is a proper edge coloring f if (1) C(u)≠C(v) for uv ∈ E(G), where C(u) = {f(uv)|uv ∈ E}, and (2) for any i, j = 1, 2,… k, we have ||Ei| |Ej|| ≤ 1, where Ei = {e|e ∈ E(G) and f(e) = i}. χáve (G) = min{k| there exists a k-AVEEC of G} is called the adjacent vertex-distinguishing equitable edge chromatic number of G. In this paper, we obtain the χáve (G) of some special graphs and present a conjecture. 相似文献
13.
A total edge irregular k-labelling ν of a graph G is a labelling of the vertices and edges of G with labels from the set {1,…,k} in such a way that for any two different edges e and f their weights φ(f) and φ(e) are distinct. Here, the weight of an edge g=uv is φ(g)=ν(g)+ν(u)+ν(v), i. e. the sum of the label of g and the labels of vertices u and v. The minimum k for which the graph G has an edge irregular total k-labelling is called the total edge irregularity strength of G.We have determined the exact value of the total edge irregularity strength of complete graphs and complete bipartite graphs. 相似文献
14.
We develop eigenvalue estimates for the Laplacians on discrete and metric graphs using various types of boundary conditions at the vertices of the metric graph. Via an explicit correspondence of the equilateral metric and discrete graph spectrum (also in the “exceptional” values of the metric graph corresponding to the Dirichlet spectrum) we carry over these estimates from the metric graph Laplacian to the discrete case. We apply the results to covering graphs and present examples where the covering graph Laplacians have spectral gaps. 相似文献
15.
A graph is 1-toroidal, if it can be embedded in the torus so that each edge is crossed by at most one other edge. In this paper, it is proved that every 1-toroidal graph with maximum degree Δ≥ 10 is of class one in terms of edge coloring. Meanwhile, we show that there exist class two 1-toroidal graphs with maximum degree Δ for each Δ≤ 8. 相似文献
16.
A proper edge coloring of a graph G is called adjacent vertex-distinguishing acyclic edge coloring if there is no 2-colored cycle in G and the coloring set of edges incident with u is not equal to the coloring set of edges incident with v, where uv ∈ E(G). The adjacent vertex distinguishing acyclic edge chromatic number of G, denoted by x′
Aa
(G), is the minimal number of colors in an adjacent vertex distinguishing acyclic edge coloring of G. If a graph G has an adjacent vertex distinguishing acyclic edge coloring, then G is called adjacent vertex distinguishing acyclic. In this paper, we obtain adjacent vertex-distinguishing acyclic edge coloring
of some graphs and put forward some conjectures. 相似文献
17.
For an integer , a graph is -hamiltonian if for any vertex subset with , is hamiltonian, and is -hamiltonian connected if for any vertex subset with , is hamiltonian connected. Thomassen in 1984 conjectured that every 4-connected line graph is hamiltonian (see Thomassen, 1986), and Ku?zel and Xiong in 2004 conjectured that every 4-connected line graph is hamiltonian connected (see Ryjá?ek and Vrána, 2011). In Broersma and Veldman (1987), Broersma and Veldman raised the characterization problem of -hamiltonian line graphs. In Lai and Shao (2013), it is conjectured that for , a line graph is -hamiltonian if and only if is -connected. In this paper we prove the following.(i) For an integer , the line graph of a claw-free graph is -hamiltonian if and only if is -connected.(ii) The line graph of a claw-free graph is 1-hamiltonian connected if and only if is 4-connected. 相似文献
18.
A multi-fan graph is a graph of the form (Pn1+Pn2+?+Pnk)×b, where b is a universal vertex, and Pn1+Pn2+?+Pnk is the disjoint union of paths Pni(ni?1) for i=1,2,…,k. In particular, if k=1, the multi-fan graph Pn1×b is the classical fan graph Fn1+1. It is proved that all the multi-fan graphs are determined by their Laplacian spectra. 相似文献
19.
A graph is called supermagic if it admits a labelling of the edges by pairwise different consecutive positive integers such that the sum of the labels of the edges incident with a vertex is independent of the particular vertex. A graph G is called conservative if it admits an orientation and a labelling of the edges by integers {1,…,|E(G)|} such that at each vertex the sum of the labels on the incoming edges is equal to the sum of the labels on the outgoing edges. In this paper we deal with conservative graphs and their connection with the supermagic graphs. We introduce a new method to construct supermagic graphs using conservative graphs. Inter alia we show that the union of some circulant graphs and regular complete multipartite graphs are supermagic. 相似文献
20.
Let G=(V,E) be a finite (non-empty) graph, where V and E are the sets of vertices and edges of G. An edge magic total labeling is a bijection α from VE to the integers 1,2,…,n+e, with the property that for every xyE, α(x)+α(y)+α(xy)=k, for some constant k. Such a labeling is called an a-vertex consecutive edge magic total labeling if α(V)={a+1,…,a+n} and a b-edge consecutive edge magic total if α(E)={b+1,b+2,…,b+e}. In this paper we study the properties of a-vertex consecutive edge magic and b-edge consecutive edge magic graphs. 相似文献