首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Structure, Curie temperature and magnetostriction of RFex (1.6 ? x ? 2.0) and R(Fe1−yTiy)1.8 (y ? 0.2) alloys (RDy0.65Tb0.25Pr0.1) have been investigated using optical microscopy, X-ray diffraction, AC initial susceptibility and standard strain gauge techniques. The homogenized RFex alloys are found to be essentially single phase in the range of 1.8 ? x ? 1.85. The second phase is a rare-earth-rich phase when x ? 1.8, and (Dy, Tb, Pr)Fe3 phase when x ? 1.85. X-ray diffraction indicates that the R(Fe1−yTiy)1.8 alloys contain a small amount of Fe2Ti phase when y ? 0.05, which increases with the increment of Ti content. The Curie temperature of R(Fe1yTiy)1.8 alloys slightly enhances with increasing Ti concentration when y ? 0.05, then remains almost unchanged in the range of 0.05 ? y ? 0.20. The magnetostriction of RFex alloys is improved when x ? 1.80 and reduced by increasing Fe content when x ? 1.85. The magnetostriction of R(Fe1−yTiy)1.8 alloys is lowered by increasing Ti content.  相似文献   

2.
The effect of Al substitution for Fe on crystal structure, magnetostriction and spontaneous magnetostriction, anisotropy and spin reorientation of a series of polycrystalline Tb0.3Dy0.7(Fe1−x Alx)1.95 alloys (x = 0, 0.05, 0.1, 0.15, 0.20, 0.25, 0.30, 0.35) at room temperature and 77 K was investigated systematically. It was found that the primary phase of Tb0.3Dy0.7(Fe1−x Alx)1.95 is the MgCu2-type cubic Laves phase structure when x < 0.4 and the lattice constant a of Tb0.3Dy0.7(Fe1−x Alx)1.95 increases approximately and monotonically with the increase of x. The substitution of Al leads to the fact that the magnetostriction λ inceases slightly in a low magnetic field (H ⩽ 40 kA/m), but decreases sharply and is easily close to saturation in a high applied field as x increases, showing that a small amount of Al substitution is beneficial to a decrease in the magnetocrystalline anisotropy. It was also found that the spontaneous magnetostriction λ 111 decreases greatly with x increasing. The analysis of the M?ssbauer spectra indicated that the easy magnetization direction in the {110} plane deviates slightly from the main axis of symmetry with the changes of composition and temperature, namely spin reorientation. A small amount of non-magnetic phase exists for x = 0.15 in Tb0.3Dy0.7(Fe1−x Alx)1.95 alloys and the alloys become paramagnetic for x > 0.15 at room temperature, but at 77 K the alloys still remain magnetic phase even for x = 0.2. At room temperature and 77 K, the hyperfine field decreases and the isomer shifts increase with Al concentration increasing.  相似文献   

3.
We report about X-ray and magnetic investigations on polycrystalline alloys with hexagonal C14 (MgZn2) structure of the system TixFe100−x in the concentration range 30.5x36.5 around the Laves-phase composition TiFe2 (Ti33.3Fe66.6). Neighboring compositions Fe50Ti50 (with B2 structure) and Ti15Fe85 and Ti20Fe80 (with BCC structure) have also been investigated. From the data we establish a magnetic phase diagram for the C14 range of the system, showing a rather sharp transition from mainly ferromagnetic ordering in the range x<32 to a mainly antiferromagnetic ordering in the range x>32. The results can be made plausible microscopically by taking the site dependence of the moments into account. A revised structural equilibrium phase diagram is also given.  相似文献   

4.
A novel class of Co-substituted 3 : 29 materials, Pr3(Fe1−xCox)27.5Ti1.5 (x=0, 0.1, 0.2, 0.3) have been synthesized. Rietveld analysis of X-ray powder diffraction patterns for the x=0, 0.1 and 0.2 compositions showed that nearly all of the compounds are formed in monoclinic symmetry, with A2/m space group with traces of α-Fe, whereas, in x=0.3, additional traces of a (Co/Fe)–Ti (1 : 12) phase are also seen. The saturation magnetization increases with Co concentration both at 5 and 300 K and is explained on the basis of a rigid band model. A magnetic transition is observed for x=0.1 near 240 K. A large increase in Curie temperature, of about 180 K for x=0.1 and about 110 K for the other concentrations, is discussed on the basis of the strengthening of TM–TM exchange by the preferential occupation of Co in some of the Fe sites originally participating in antiferromagnetic bonds.  相似文献   

5.
We present a magnetic study of the insulating perovskite LaMn1−xTixO3+δ (0<x0.2) including measurements of magnetization, susceptibility, and magnetic relaxation. The Curie temperature was found to decrease with increasing content of Ti. Two distinct magnetic transitions, irreversibility, non-exponential relaxation and aging effects confirm a reentrant spin–glass state for x=0.2. The time decay of the magnetization has an algebraic functional form for times up to 2 h. The specific heat also displays characteristic features of a spin–glass system by a linear low-temperature dependence and a broadened peak near the temperature of the reentrant transition.  相似文献   

6.
The structure, Curie temperature and magnetostriction of Pr0.15Tb0.3Dy0.55Fe1.85−xBx   (x=0–0.3x=00.3) alloys have been investigated using X-ray diffraction, AC susceptibility and standard strain gauge techniques. It was found that all the samples possess entirely MgCu2-type cubic Laves structure. With increasing B concentration, the lattice parameter decreases, while the Curie temperature remains unchanged. The magnetostriction of Pr0.15Tb0.3Dy0.55Fe1.85−xBx alloys at room temperature increases with increasing B concentration firstly, and then decreases slightly.  相似文献   

7.
A study of the structure change with temperature in amorphous Fe100xPx (13 x 24) alloys was carried out by measuring magnetization and thermal expansion and also by structural analysis using X-ray diffraction and differential thermal analysis (DTA). The structure of the amorphous alloys relaxes (the decrease of excess free volume) at temperatures 100–150 K below the crystallization temperatures. The alloys with x 15 transform into (α-Fe + amorphous) at about 600 K. The alloys with x15 transform into (α-Fe+amorphous+Fe3P) at about 600 K. With further heating, the alloys transform into (α-Fe+Fe3P) both of which are stable phases from the equilibrium phase diagram.  相似文献   

8.
Ba(Ti1−x,Nix)O3 thin films were prepared on fused quartz substrates by a sol–gel process. X-ray diffraction and Raman scattering measurements showed that the films are of pseudo-cubic perovskite structure with random orientation and the change of lattice constant caused by Ni-doping with different concentrations is very small. Optical transmittance spectra indicated that Ni-doping has an obvious effect on the energy band structure. The energy gap of Ba(Ti1−x,Nix)O3 decreased linearly with the increase of Ni concentration. It indicates that the adjusting of band gap can be achieved by controlling the Ni-doping content accurately in Ba(Ti1−x,Nix)O3 thin films. This has potential application in devices based on ferroelectric thin films.  相似文献   

9.
A pseudopotential formalism within the virtual crystal approximation in which the effects of composition disorder are involved is applied to the GaxIn1−xAsyP1−y quaternary alloys in conditions of lattice matching to GaAs, InP and ZnSe substrates so as to predict their energy band gaps. Very good agreement is obtained between the calculated values and the available experimental data for the alloy lattice matched to InP and GaAs. The alloy is found to be a direct-gap semiconductor for all y compositions whatever the lattice matching to the substrates of interest. The (ΓΓ) band-gap ranges and the ionicity character are found to depend considerably on the particular lattice-matched substrates suggesting therefore that, for an appropriate choice of y and the substrate, GaxIn1−xAsyP1−y could provide more diverse opportunities to obtain desired band gaps, which opens up the possibility of discovering new electronic devices with special features and properties.  相似文献   

10.
A systematic study of the formation, structure and magnetic properties of (Nd,Dy)3Fe27.5(Ti,Mo)1.5 compounds has been performed. Rietveld analyses of the X-ray patterns of the samples indicate that the concentrations of Ti and Mo affect the formation and structural properties slightly, whereas different rare-earth (Nd and Dy) contents influence them significantly. It is found that high Dy contents make it difficult to form the 3:29-type structures. The Curie temperatures of Nd2.1Dy0.9Fe27.5Ti1.5−xMox decrease monotonically as more Ti was replaced by Mo but their saturation magnetizations remain almost unchanged; in contrast, for Nd3−yDyyFe27.5TiMo0.5, their saturation magnetizations decrease monotonically with increasing Dy contents while their Curie temperatures are constant.  相似文献   

11.
Highly strained quantum cascade laser (QCL) and quantum well infrared photodetector (QWIPs) structures based on InxGa(1−x)As−InyAl(1−y)As (x>0.8,y<0.3) layers have been grown by molecular beam epitaxy. Conditions of exact stoichiometric growth were used at a temperature of 420°C to produce structures that are suitable for both emission and detection in the 2–5 μm mid-infrared regime. High structural integrity, as assessed by double crystal X-ray diffraction, room temperature photoluminescence and electrical characteristics were observed. Strong room temperature intersubband absorption in highly tensile strained and strain-compensated In0.84Ga0.16As/AlAs/In0.52Al0.48As double barrier quantum wells grown on InP substrates is demonstrated. Γ–Γ intersubband transitions have been observed across a wide range of the mid-infrared spectrum (2–7 μm) in three structures of differing In0.84Ga0.16As well width (30, 45, and 80 Å). We demonstrate short-wavelength IR, intersubband operation in both detection and emission for application in QC and QWIP structures. By pushing the InGaAs–InAlAs system to its ultimate limit, we have obtained the highest band offsets that are theoretically possible in this system both for the Γ–Γ bands and the Γ–X bands, thereby opening up the way for both high power and high efficiency coupled with short-wavelength operation at room temperature. The versatility of this material system and technique in covering a wide range of the infrared spectrum is thus demonstrated.  相似文献   

12.
The effect of IIIA metal and transition metalT substitution for Fe on crystal structure, magnetostriction and spontaneous magnetostriction, anisotropy and spin reorientation of a series of polycrystalline Tb0.3 Dy0.7 (Fe0.9 T 0.1)1.95 (T=Mn, Fe, Co, B, Al, Ga) alloys at room temperature were investigated systematically. It was found that the primary phase of the Tb0.3 Dy0.7 (Fe0.9 T 0.1)1.95 alloys is the MgCu2-type cubic Laves phase structure for different substitution. The magnetostriction λ{ins} decrases greatly for the substitution of IIIA metal, B, Al and Ga, but is saturated more easily for Al and Ga substitution, showing that the Al and Ga substitution is beneficial to a decrease in the magnetocrystalline anisotropy of Tb0.3 Dy0.7 (Fe0.9 T 0.1)1.95 alloys. However, the substitution of transition metal Mn and Co decreases slightly the magnetostriction λ{ins}. It was also found that the effect of different substitutions on the spontaneous magnetostriction λ{in111} is distinct. The analysis of the M?ssbauer spectra indicates that the easy magnetization direction in the {110} plane deviates slightly from the main axis of symmetry for Al and Ga substitution, namely spin reorientation, but it does not change evidently for B, Mn and Co substitution.  相似文献   

13.
Magnetic and low temperature specific heat measurements have been performed on iron doped YBa2(Cu1−xFex)3O7−δ samples with different oxygen contents (δ0 and δ1). Iron doping induces an orthorhombic to tetragonal transition and a decrease of both Tc and diamagnetic signal. Low temperature specific heat measurements reveal a Schottky type anomaly for δ0 samples with x=0.01 (1.8 K) and x=0.02 (3 K). This anomaly is attributed to magnetic interactions within iron limited chains. A numerical analysis of this effect is proposed.  相似文献   

14.
Ceramics with formula (1 − x)Pb(Zr0.52Ti0.48)O3x(Bi3.25La0.75)Ti3O12 (when x = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0) were prepared by a solid-state mixed-oxide method and sintered at temperatures between 950 °C and 1250 °C. It was found that the optimum sintering temperature was 1150 °C at which all the samples had densities at least 95% of theoretical values. Phase analysis using X-ray diffraction indicated the existence of BLT- as well as PZT-based solid solutions with corresponding lattice distortion. Scanning electron micrographs of ceramic surfaces showed a plate-like structure in BLT-rich phase while the typical grain structure was observed for PZT-rich phase. The grain sizes of both pure BLT and PZT ceramics were found to decrease as the relative amount of the other phase increased. This study suggested that tailoring of properties of this PZT–BLT system was possible especially on the BLT-rich side due to its large solubility limit.  相似文献   

15.
The electronic structure of Mg0.95Mn0.05Fe2−2xTi2xO4 (0x0.8) compound is investigated using near edge X-ray absorption fine structure, (NEXAFS) spectroscopy measurements, carried out at O K, Fe and Ti L3,2-edges at room temperature. The O K-edge spectra indicate that the Fe 3d orbitals have been considerably modified and a new spectral feature start dominating in the pre-edge region at higher Ti doping. The Fe 2p NEXAFS spectra exhibit a mixed valent Fe2+/Fe3+ states apart from the conversion of Fe3+ to Fe2+ with the substitution of Ti ions. The Ti L3,2-edge spectra indicate that Ti ions remain unchanged at 4+ state. These variations in the host electronic structure due to Ti substitution are consistent with the dielectric and transport properties of the material.  相似文献   

16.
朱小溪  刘敬华  徐翔  蒋成保 《中国物理 B》2011,20(7):77501-077501
A method based on the measurement of Fe average atomic magnetic moment to identify the structural transition caused by the increase of Ga content in quenched Fe1 - xGax alloys (0.15 ≤ x ≤ 0.30) is proposed. The quenched Fe1 - xGax alloys show a change of the Fe average atomic magnetic moment from 2.25 μB to 1.78 μB and then to 1.58 μB, which corresponds to the structural transition from A2 to D03 and then to B2. The relationship between the structure and the magnetostriction is clarified, and the maximum magnetostriction appears in the A2 phase. The variation tendency of the magnetostriction is well characterized, which also reflects the structural transition.  相似文献   

17.
The Bi1−xAxFe1−xTixO3 (A—Ca, Sr, Pb, Ba) and BiFe1−xTixO3+δ systems have been studied using X-ray, neutron powder diffraction and magnetization measurements in a magnetic field up to 14 T. It was found that all Bi1−xAxFe1−xTixO3 solid solutions are rhombohedral up to x=0.3. In the case of BiFe1−xTixO3+δ the rhombohedral distortion preserved up to x=0.11. A homogeneous weakly ferromagnetic state was found for Bi1−xCaxFe1−xTixO3 (0.15≤x≤0.25) and BiFe1−xTixO3+δ (0.06≤x≤0.11), probably due to magnetoelectric interactions, whereas Bi1−xAxFe1−xTixO3 (A—Sr, Pb, Ba) compounds above doping level x>0.1 seem to be collinear antiferromagnets.  相似文献   

18.
The structure and magnetostriction of the (Tb1−xDyx)0.2Pr0.8(Fe0.4Co0.6)1.88C0.05 intermetallic compounds (0≤x≤1) were studied by X-ray diffraction and magnetic measurements. The formation of an approximate single Laves phase with a MgCu2-type cubic structure was observed in this series of compounds. It was found that the Curie temperature and the saturation magnetization of the compounds would decrease with increase in the Dy content up to x=1. The magnetostriction λa (λa=λ-λ) gently rises when x≤0.6, and follows with a precipitous fall when x exceeds 0.6, with the highest value of λa being reached in the compounds with x=0.6. The magnetostriction of all the samples was observed to approach their own saturation in the magnetic fields higher than 4 kOe. This indicates that the addition of a small amount of Dy could effectively improve the low-field magnetostriction of the Tb0.2Pr0.8(Fe0.4Co0.6)1.88C0.05 compounds, which could become a kind of promising magnetostrictive material.  相似文献   

19.
A systematic investigation of crystallographic and intrinsic magnetic properties of the hydrides R3Fe29−xVxHy (R=Y, Ce, Nd, Sm, Gd, Tb, and Dy) has been performed in this work. The lattice constants , and c and the unit cell volume of R3Fe29−xVxHy decrease with increasing rare-earth atomic number from Nd to Dy, except for Ce, reflecting the lanthanide contraction. Hydrogenation results in regular anisotropic expansions along the a-, b-, and c-axes in this series of hydrides. Abnormal crystallographic and magnetic properties of Ce3Fe27.5V1.5H6.5, like Ce3Fe27.5V1.5, suggest that the Ce ion is non-triply ionized. Hydrogenation leads to the increase in both Curie temperature for all the compounds and in the saturation magnetization at 4.2 K and RT for R3Fe29−xVx with R=Y, Ce, Nd, Sm, Gd, and Dy, except for Tb. Hydrogenation also leads to a decrease in the anisotropy field at 4.2 K and RT for R3Fe29−xVx with R=Y, Ce, Nd, Gd, Tb, and Dy, except for Sm. The Ce3Fe27.5V1.5 and Gd3Fe28.4V0.6 show the larger storage of hydrogen with y=6.5 and 6.9 in these hydrides.  相似文献   

20.
The maximum value of hysteresis loss EhMAX due to the itinerant-electron metamagnetic (IEM) transition of La(FexSi1−x)13 and the partially substituted compounds La1−zCez(Fe0.86Si0.14)13 and La1−zPrz(Fe0.86Si0.14)13 increases when the magnetocaloric effects (MCEs) become large. It should be noted that the reduction of EhMAX without the decrease of large MCEs is achieved in La1−zCez(Fe0.86Si0.14)13 and La1−zPrz(Fe0.86Si0.14)13. For both the compound systems mentioned above, the critical temperature T0 for the IEM transition decreases and the difference between T0 and the Curie temperature TC becomes larger with decreasing TC. These results are consistent with the magnetic phase diagram of La(Fe0.86Si0.14)13 under hydrostatic pressure. Consequently, the reduction of EhMAX in La1−zCez(Fe0.86Si0.14)13 and La1−zPrz(Fe0.86Si0.14)13 is closely related with the magnetovolume effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号