首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Transient optical absorption spectra were obtained and photochemical transformations of aromatic amine derivatives (Am) used as electron donors in polymer EDA complexes were studied. It was shown that successive electron — proton — electron processes in (Am.CBr4) complexes are strongly influenced by whether the Am is monomer or a molecular fragment chemically incorporated into a macromolecular chain.  相似文献   

2.
N‐Silylaminotitanium trichlorides, Me3S(R)N‐TiCl3 ( 18 ) [R = tBu ( a ), SiMe3 ( b ), 9‐borabicyclo[3.3.1]nonyl (9‐BBN)( c )], and (CH2SiMe2)2N‐TiCl3 ( 18d ) were obtained in high yield and high purity from the reaction of the respective bis(silylamino)plumbylene with an excess of titanium tetrachloride. The crystal structure of 18a was determined by X‐ray analysis. The reactions of the analogous stannylenes with an excess of TiCl4 did not lead to 18 . N‐Lithio‐trimethylsilyl[9‐(9‐borabicyclo[3.3.1]nonyl)]amine ( 8 ) was prepared, structurally characterized and used for the synthesis of a new bis(amino)stannylene 10 and a plumbylene 11 . The compounds 18a—d served as ideal starting materials for the synthesis of bis(silylamino)titanium dichlorides, where the silylamino groups can be identical ( 19 ) or different ( 20 ). This was achieved either by the reaction of 18 again with bis(amino)plumbylenes or with lithium N‐silylamides. In contrast to the direct synthesis starting from titanium tetrachloride and two equivalents of the respective lithium amide, which in general affords 19 with identical amino groups only in low yield, the procedure starting from 18 is much more versatile and gave the pure compounds 19 or 20 in almost quantitative yield. Further treatment of the dichlorides 19 or 20 with lithium amides led to tris(amino)titanium chlorides 21 . The dichlorides 19 or 20 reacted with two equivalents of alkynyllithium reagents to give the first well characterized examples of di(alkyn‐1‐yl)bis(N‐silylamino)titanium compounds 22 — 27 . These compounds reacted with trialkylboranes (triethyl or tripropylborane) by 1, 1‐organoboration. In some cases, the extremely reactive reaction products could be identified as novel 1, 1‐bis(silylamino)titana‐2, 4‐cyclopentadienes 28 — 31 bearing a dialkylboryl group in 3‐position. In solution, the proposed structures of all products were deduced from a consistent set of data derived from multinuclear magnetic resonance spectroscopy (1H, 11B, 13C, 14N, 15N, 29Si, 35Cl NMR).  相似文献   

3.
The mechanisms of reactions of CS2 with CHBr??/CBr 2 ?? anions have been investigated by density functional theory calculations. Our results strongly suggest that the main pathway is middle-C attack, which is highly exothermic. The primary ionic products are Br? and C2S2 ?, and SCHBr? is a minor product. Theoretical results are consistent with experimental observation. Based on the investigations presented here, we confirm that CHBr?? is more reactive than CBr 2 ?? .  相似文献   

4.
Stable (N-aryl)- and (N-alkyl)dialkylsilaketenimines R2SiCNR' [R = 1,1,4,4-tetrakis(trimethylsilyl)butane-1,4-diyl, R' = 2,6-diisopropylphenyl (2a) and 1-adamantyl (2b)] were synthesized as blue and red crystals by the reactions of isolable dialkylsilylene 3 with 2,6-diisopropylphenyl isocyanide and 1-adamantyl isocyanide. X-ray single-crystal analysis disclosed that molecular structures of 2a and 2b were close to each other and were characterized to be allenic rather than zwitterionic or a silylene-isocyanide complex. The bonding characteristics of silaketenimines are found to be affected strongly by the substituents on silicon and nitrogen atoms. Remarkable red-shift of the pi(Si=C) --> pi*(C=N) band of 2a [lambdamax/nm (epsilon) 647(156)] compared with that of 2b [465 nm (109)] is ascribed to lowering of the pi*(C=N) orbital level due to significant interaction between pi*(C=N) and pi*(N-aryl) orbitals.  相似文献   

5.
Various types of soluble crosslinked polymers obtained from the copolymerization of methylmethacrylate (MMA) and p-divinylbenzene (p-DVB) in the presence of a transfer agent (CBr4) have been discussed in relation to the variation of the structure during the reaction time. When [p-DVB]/[MMA] = 1.49 × 10?3 and [CBr4]/[MMA] = 1.28 × 10?4, only linear polymers (primary polymer; M n = 1.0 × 105) with pendant vinyl groups are formed intially. Considerable branched structure is attained in rather large polymers (M n = 2.5 × 105), but the number of pendant double bonds is not enough to reach the gelation. As the concentration of the transfer agent becomes high, the intermolecular crosslinking is depressed, and the formed polymers contain loops and short chains. At [p – DVB]/[MMA] = 7.43 × 10?3 and [CBr4]/[MMA] = 1.28 × 10?3, the shape of polymer with the same M n became compact gradually with increasing reaction time. These results are considered to be useful for the preparation of soluble crosslinked polymer with controlled structure.  相似文献   

6.
The use of transition metal-catalyzed coupling reactions in the synthesis of conducting polymers is discussed. These reactions are of growing importance in polymer synthesis and are particularly important in the synthesis of highly functionalized conjugated (conducting) polymers. In this report we discuss applications of this methodology for the synthesis of conducting polymer sensory materials and polymers with reactive functional groups. In the sensory polymers we have incorporated crown ether groups which induce perturbations to the polymer's electronic structure when exposed to an alkali metal ion. Our interest in polymers with reactive functional groups is for the development of polymers which can be transformed into novel all-carbon ladder polymers.  相似文献   

7.
Insertion of tert‐butyl isocyanide into the C(sp2)?S bonds of heteroaryl sulfides is catalyzed by a palladium diphosphine complex. Thioimidates generated through this reaction could be readily hydrolyzed under acidic conditions to yield the corresponding thioesters, which are of synthetic use. This insertion is useful because starting heteroaryl sulfides were readily prepared by either conventional ways or through sulfur‐specific extended Pummerer reactions.  相似文献   

8.
A reaction of isocyanide complex cis-[PdCl2(CNAr)2] with hydrazones H2N-N=CR1R2 proceeded at the carbon atom of one of the isocyanide groups and gave the corresponding diaminocarbene isocyanide palladium(ii) complexes. These complexes showed high catalytic activity in the Sonogashira and Suzuki cross-coupling reactions.  相似文献   

9.
Interchange reactions involving esters were used in reactive processing with a view to obtaining polymer blends with stabilized morphology. Dibutyltinoxide (DBTO) appeared to be an excellent catalyst for these reactions. In fact, it was shown that the true catalytic entity is a dimeric alkoxy, acyloxy distannoxane entity formed in situ, during processing, by the reaction of the DBTO with the polymer ester groups. This compound was first obtained with model esters and characterized by multinuclear NMR analysis (1H, 13C, 119Sn). The catalytic efficiency of the in situ polymeric distannoxane was compared with other added parent distannoxanes. Later on – still with model compounds – ligand exchanges at the tin sites were investigated and it was shown that these exchanges are not essential to the catalyst activity, but when they take place it increases the catalytic efficiency. Then, this type of catalysis was successfully used for interchange reactions in reactive extrusion of different polymer blends, some applications are briefly presented. To cite this article: M.-F. Llauro and A. Michel, C. R. Chimie 9 (2006).  相似文献   

10.
New polymer supported Cu(II) complexes based on an epoxy functionalized gel type resin were prepared using the multi‐stage procedures. The reactions of epoxy groups with ethylenediamine or tris(2‐aminoethyl)amine, and then NH2 groups with salicylaldehydes were used for the preparation of a series of amine‐imine functionalized polymer supports. Copper(II) acetate was used as a source of metal ions. The complexes were characterized using ICP‐OES, FTIR, DR UV–Vis and TGA techniques, and tested as catalysts in two model C‐N and a series of A3 coupling reactions. Their catalytic activity was rather low in the C‐N coupling reactions between imidazole and iodobenzene or phenylboronic acid. However, the second of the reactions could be conducted effectively under milder conditions. The complexes were efficient used as recyclable catalysts in the A3 coupling reactions. A series of aromatic aldehydes and secondary amines and phenylacetylene could be coupled using 1% mol catalyst.  相似文献   

11.
Trimethylsilyl chloride is an efficient activating agent for azines in isocyanide‐based reactions, which then proceed through a key insertion of the isocyanide into a N?Si bond. The reaction is initiated by N activation of the azine, followed by nucleophilic attack of an isocyanide in a Reissert‐type process. Finally, a second equivalent of the same or a different isocyanide inserts into the N?Si bond leading to the final adduct. The use of distinct nucleophiles leads to a variety of α‐substituted dihydroazines after a selective cascade process. Based on computational studies, a mechanistic hypothesis for the course of these reactions was proposed. The resulting products exhibit significant activity against Trypanosoma brucei and T. cruzi, featuring favorable drug‐like properties and safety profiles.  相似文献   

12.
The focus of the current report lies on recent developments of synthetic methods applied to the synthesis of some high‐valent complexes containing the nitrido functionality [N]3— as a link between a group 4, 5 or 6 transition metal and a main group element E (E = B, Si, Ge, P, S). Emphasis is put on results, that have been obtained within the “Schwerpunktprogramm “Nitridobrücken” funded by the Deutsche Forschungsgemeinschaft. The synthetic methods include condensation reactions of reactive chloro and oxo complexes (M = V, Nb, Ta, Cr, Mo, W) with silylamines, sulfonylamides, with N‐silyl and N‐lithio iminophosphoranes, furthermore methatesis reactions of oxo complexes with N‐sulfonyl sulfinyl amides (M = V, Cr, Mo, W), the oxidative addition of element azides to d2 metal centers (M = V, W), and finally transamination reactions of N‐H iminophosphoranes with amido complexes (M = Ti, Sm).  相似文献   

13.
A photochemical strategy enabling λ‐orthogonal reactions is introduced to construct macromolecular architectures and to encode variable functional groups with site‐selective precision into a single molecule by the choice of wavelength. λ‐Orthogonal pericyclic reactions proceed independently of one another by the selection of functional groups that absorb light of specific wavelengths. The power of the new concept is shown by a one‐pot reaction of equimolar quantities of maleimide with two polymers carrying different maleimide‐reactive endgroups, that is, a photoactive diene (photoenol) and a nitrile imine (tetrazole). Under selective irradiation at λ=310–350 nm, any maleimide (or activated ene) end‐capped compound reacts exclusively with the photoenol functional polymer. After complete conversion of the photoenol, subsequent irradiation at λ=270–310 nm activates the reaction of the tetrazole group with functional enes. The versatility of the approach is shown by λ‐orthogonal click reactions of complex maleimides, functional enes, and polymers to the central polymer scaffold.  相似文献   

14.
A double four component Azido-Ugi reaction of isocyanide, TMSN3, aldehyde, and 4,4′-sulfonyldianiline with two amine functional groups in MeOH at 65°C has been described. The synthesis of pharmacologically and structurally interesting compounds with two 1,5-disubstituted tetrazole rings via a reaction from available and inexpensive reagents under a convenient process and mild reaction conditions has been reported. Modifications in the structure of the reaction product could be followed by varying the aldehyde or isocyanide component. The products are new and were well described by Mass, 1H NMR, and 13C NMR spectral studies.  相似文献   

15.
The combination of polymers with macromers derived from inorganic species and oligomers to yield controlled hyperstructures can potentially allow the design of materials with tunable mechanical, optoelectronic properties and chemical behavior. In this work, novel hybrid structures were processed based upon the controlled insertion of macromers derived from inorganic groups and oligomers into previously chemically modified polymer frameworks. The chemical procedure involved a series of steps that started with the creation of a functionalized framework to act as host for the construction of the polymer-macromer hyperstructures. The designed polymer framework was obtained by incorporating highly polar groups, such as sulfonic acid, into poly(aryl ether sulfones). Following this step, the newly promoted reactive sites were used to insert alkoxysilane groups through reacting modified poly(aryl ether sulfones) with specifically selected silane compounds. The chemical reactions and the obtained novel structures were characterized using NMR, FTIR, AFM and thermal analysis. Results showed that structural parameters such as the concentration of siloxane bonds across the material and the density of cross-links could be controlled by selecting different conditions of reaction. Completely homogeneous and also heterogeneous, but still controlled, structures could be produced using the described procedure. The developed polymer structures containing controlled profiles of concentration, densities and chemical functionalities can have tailorable mechanical properties and chemical activity.  相似文献   

16.
The Diels–Alder reactions between cyclopentadiene and various α,β-unsaturated aldehyde, imine, and iminium dienophiles were quantum chemically studied using a combined density functional theory and coupled-cluster theory approach. Simple iminium catalysts accelerate the Diels–Alder reactions by lowering the reaction barrier up to 20 kcal mol−1 compared to the parent aldehyde and imine reactions. Our detailed activation strain and Kohn–Sham molecular orbital analyses reveal that the iminium catalysts enhance the reactivity by reducing the steric (Pauli) repulsion between the diene and dienophile, which originates from both a more asynchronous reaction mode and a more significant polarization of the π-system away from the incoming diene compared to aldehyde and imine analogs. Notably, we establish that the driving force behind the asynchronicity of the herein studied Diels–Alder reactions is the relief of destabilizing steric (Pauli) repulsion and not the orbital interaction between the terminal carbon of the dienophile and the diene, which is the widely accepted rationale.

Quantum chemical activation strain analyses revealed that iminium catalysts accelerate Diels–Alder reactions by reducing the Pauli repulsion between reactants.  相似文献   

17.
In the past, chemically reactive polymeric interfaces have been considered to be of potential interest for developing functional materials for a wide range of practical applications. Furthermore, the rational incorporation of luminescence properties into such chemically reactive interfaces could provide a basis for extending the horizon of their prospective utility. In this report, a simple catalyst-free chemical approach is introduced to develop a chemically reactive and optically active polymeric gel. Branched-polyethyleneimine (BPEI)-derived, inherently luminescent carbon dots (BPEI-CDs) were covalently crosslinked with pentaacrylate (5Acl) through a 1,4-conjugate addition reaction under ambient conditions. The synthesized polymeric gel was milky white under visible light; however, it displayed fluorescence under UV light. Additionally, the residual acrylate groups in the synthesized fluorescent gel allowed its chemical functionality to be tailored through facile, robust 1,4-conjugate addition reactions with primary-amine-containing small molecules under ambient conditions. The chemical reactivity of the luminescent gel was further employed for a proof-of-concept demonstration of portable and parallel ‘ON’/‘OFF’ toxic chemical sensing (namely, the sensing of nitrite ions as a model analyte). First, the chemically reactive luminescent gel derived from BPEI-CDs was covalently post-modified with aniline for the selective synthesis of a diazo compound in the presence of nitrite ions. During this process, the color of the gel under visible light changed from white to yellow and, thus, the colorimetric mode of the sensor was turned ‘ON’. In parallel, the luminescence of the gel under UV light was quenched, which was denoted as the ‘OFF’ mode of the sensor. This parallel and unambiguous ‘ON’/‘OFF’ sensing of a toxic chemical (nitrite ions, with a detection limit of 3 μM) was also achieved even in presence of other relevant interfering ions and at concentrations well below the permissible limit (65 μM) set by the World Health Organization (WHO). Furthermore, this chemically reactive luminescent gel could be of potential interest in a wide range of basic and applied contexts.

An unprecedented chemically reactive and polymeric luminescent gel is developed, and this material is further employed to develop a portable and rapid sensor for a practically relevant analyte (nitrite ions) with a sensitivity of 3 μM.  相似文献   

18.
The article reviews results of research that was initially aiming at complexes containing new and unusual [M—N—E] element combinations (M = transition metal, E = main group element), but soon turned into studies on model complexes for metal enzymes such as nitrogenases, hydrogenases or CO dehydrogenases, because several of the resulting [M—N—E] complexes exhibited reactions relevant to these enzymes. It could be shown that alkylation of transition metal thiolate nitride complexes gives alkylimido complexes when bulky and mild alkylation reagents, e.g. Ph3C+, are used. Hydride addition to [Ru(NO)(pybuS4)]+ yielded [Ru(HNO)(pybuS4)], which contains a bifurcated [M—N(X, Y)] bridge. The diazene complex [μ‐N2H2{Ru(PCy3)(S4)}2] undergoes H+/D+ and H+/D2 exchange reactions that enabled to rationalize the until then inexplicable ‘N2 dependent HD formation’ catalyzed by nitrogenases. Out of a larger number of [Ni(NE)(S3)] complexes, the compound [Ni(NHPPr3)(S3)] proved capable to model structure and reactivity features of [NiFe] hydrogenases. The [Ni(L)(S3)] complexes with L = N3 and N(SiMe3)2 exhibit extremely high reactivity towards CO, CO2 and SO2. The reactions lead to NCO, CN and NSO complexes and bear potential relevance for carbon monoxide dehydrogenase reactions.  相似文献   

19.
The synthesis, structure, and photophysical and electrochemical properties of cyclometalated iridium complexes with ancillary cyano and isocyanide ligands are described. In the first synthetic step, cleavage of dichloro-bridged dimers [Ir(N=C)2(mu-Cl)]2 (N=C = 2-phenylpyridine, 2-(2-fluorophenyl)pyridine, and 2-(2,4-difluorophenyl)pyridine) by isocyanide ligands gave monomeric species of the types Ir(N=C)2(RNC)(Cl) (RNC = t-butyl isocyanide, 1,1,3,3-tetramethylbutyl isocyanide, 2-morpholinoethyl isocyanide, and 2,6-dimethylphenyl isocyanide). In turn, the chloride was replaced by cyanide giving Ir(N=C)2(RNC)(CN). The X-ray structures for two of the complexes show that the trans-pyridyl/cis-phenyl geometry of the parent dimer is preserved, with the ancillary ligands positioned trans to the cyclometalated phenyls. The cyano complexes all display strong blue photoluminescence in ambient, deoxygenated solutions with the first lambdamax ranging from 441 to 458 nm, quantum yields spanning 0.60 to 0.75, and luminescent lifetimes of 12.0-21.4 mus. A lack of solvatochromism and highly structured emission indicate that the lowest energy excited state is triplet ligand centered with some admixture of singlet metal-to-ligand charge-transfer character.  相似文献   

20.
Oxidative addition reactions of quinolines 1a , b with Pd(dba)2 in the presence of PPh3 (1:2) in acetone gave dinuclear palladium complexes [Pd(C,N‐2‐C9 H4N‐CHO‐3‐R‐6)Cl(PPh3)]2 [(R = H ( 2a ), R = OMe ( 2b ), which were reacted with isocyanide XyNC (Xy = 2,6‐Me2C6H3) to give novel iminoacyl quinolinylpalladium complexes 3a , b in good yields (81 and 77%). Cyclopalladated complexes 3a , b were also obtained in low yields (39 and 33.5%) via one‐pot reaction of 1a , b with isonitrile XyNC:Pd(dba)2 (4:1). The reaction of 3a , b with Tl(TfO) (TfO = triflate, CF3SO3) in the presence of H2O or EtOH causes depalladation reactions of complexes to provide the corresponding organic compounds 4a , b , 5a , b and 6a , b in yields of 41, 27 and 18 ? 19%, respectively. The products were characterized by satisfactory elemental analyses and spectral studies (IR, 1H, 13C and 31P NMR). The crystal structures 2a , 3a and 3b were determined by X‐ray diffraction studies. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号