首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Integral cross sections for fission and for one- and two-neutron transfer reactions in the system132Xe+238U were measured radiochemically in the energy range 0.7≦E/E Coul≦1. The excitation functions for fission and transfer are found to be essentially parallel below 0.85×E Coul. Even at the lowest energies the transfer cross sections exceed the fission cross section by more than one order of magnitude. With the other projectiles129Xe and136Xe different transfer cross sections illustrating their sensitivity for the ground stateQ-values,Q gg , are observed while the fission cross sections are the same as in the132Xe +238U reaction. The fission data are interpreted in terms of a continuous transition between Coulomb fission and several transfer-induced fission processes.  相似文献   

2.
The absolute yields of prompt and delayed fission induced by negative muons in 232Th, 238U and 235U have been measured. The delayed fission yields are much lower than could be predicted from Γn/Γf systematics for 15–20 MeV nuclear excitation. The systematics of prompt fission yields are compared with recently obtained photofission data. It is suggested that prompt fission can be used for investigating the channel structure of the fission barrier.  相似文献   

3.
R K Jain  H S Virk  J Rama Rao  S K Bose 《Pramana》1997,49(5):515-519
Fission-track registration characteristics of Lexan solid state nuclear track detectors have been used to measure the fast neutron induced fission cross section of232Th. The fast neutrons (?14.2MeV) were produced with the help of an AN-400 model Van-de-Graaff accelerator at Banaras Hindu University laboratory using3H(2H,n)4He reaction and were used to irradiate the fissile target deposited on the plastic detector. The track densityT, registered on the plastic detector is related to the fission cross sectionσ f, through the relationT=knσ føt wheren is the number of fissile atoms per cm2 in the deposit, ø is the neutron flux,k is fission track registration efficiency andt is the time of irradiation. The fission cross sectionσ f of232Th, relative to the well measured fission cross section of238U, was found to be 0.36±0.04 barn.  相似文献   

4.
We have searched for beta-delayed fission in the decay of 2.3 min238Pa produced in the238U(n,p) reaction with 14.7 MeV neutrons. Through microprocessor-controlled chemical separations of protactinium about 109 atoms of238Pa were isolated and exposed to fission track detectors. From the absence of fission tracks an upper limit for the betadelayed fission probability of238Pa, i.e.P βf <2.6 10?8, is obtained at 95% confidence level. This rules out positive evidence for this decay mode of238Pa reported elsewhere. Simple theoretical estimates ofP βf range from 10?7 to 10?9.  相似文献   

5.
The mass-energy distributions of fragments originating from the fission of the compound nucleus 226Th and their correlations with the multiplicity of gamma rays emitted from these fragments are measured and analyzed in 18O + 208Pb interaction induced by projectile oxygen ions of energy in the range E lab = 78–198.5 MeV. Manifestations of an asymmetric fission mode, which is damped exponentially with increasing E lab, are demonstrated. Theoretical calculations of fission valleys reveal that only two independent valleys, symmetric and asymmetric, exist in the vicinity of the scission point. The dependence of the multiplicity of gamma rays emitted from both fission fragments on their mass, Mγ(M), has a complicated structure and is highly sensitive to shell effects in both primary and final fragments. A two-component analysis of the dependence Mγ(M) shows that the asymmetric mode survives in fission only at low partial-wave orbital angular momenta of compound nuclei. It is found that, for all E lab, the gamma-ray multiplicity Mγ as a function of the total kinetic energy (TKE) of fragments, Mγ(TKE), decreases linearly with increasing TKE. An analysis of the energy balance in the fission process at the laboratory energy of E lab = 78 MeV revealed the region of cold fission of fragments whose total kinetic energy is TKE ~Q max.  相似文献   

6.
We discuss the effects of nuclear dissipation on fission probabilities that are characteristic of a diffusion model of the fission process. Reproducing the experimental fission probabilities at low excitation energies fixes the ratioa f/an of the level density parameters for a given strength of the reduced dissipation coefficientβ. These low energy constraints ona f/an andβ balance the effects of transients on neutron multiplicities prior to fission at higher excitation energies. For the competitive decay of158Er formed in the reaction16O+142Nd at 207 MeV we show that dueto transients only the multiplicity of pre-fission neutrons is enhanced with respect to the prediction of the statistical model in a manner consistent with our earlier general analysis.  相似文献   

7.
The cross section for 236U fission in the neutron-energy range E n = 0.001–20 keV was measured by using the INR RAS (Institute of Nuclear Research, Russian Academy of Sciences, Moscow) LSDS-100 neutron spectrometer of the lead slowing-down spectrometer type. The resonance fission areas of the resonances at 5.45 eV and 1.28 keV were found, and the fission widths of these resonances were evaluated. The cross section for the 238U(n, f) fission process was measured, and the threshold sensitivity of the LSDS-100 to small values of fission cross sections was estimated. The well-known intermediate structure in the cross section for the neutron-induced subbarrier fission of 236U was confirmed.  相似文献   

8.
9.
Fission fragments from the reaction237Np(μ ?,γ,f) have been measured in coincidence with muonic X-rays. The efficiency of the fission fragment detector is determined from (μ ?,γ,f)-data of the same experiment. The total fission probability perμ-stopP t has been measured as well as the fission probabilities Pf of the non-radiative muonic (3d→1s)- and (2p→1s)-transitions; the latter has been divided into two parts leading to different mean excitation energiesE:P t =(54±17)%,P f (3d→1s)=(41±21)%,P f (2p→1s,E=6.218 MeV)=(61±19)%, andP f (2p→1s,E=6.525 MeV)=(57±18)%. The influence of the muon on the fission barrier is discussed. The fission probability after muon capture is compared with a calculated value using a distribution of nuclear excitation energies following muon capture and the fission probability as measured in a238U(3He,αf)-reaction.  相似文献   

10.
The excitation function of the fission probability P E E x) for238U has been measured in the reaction238U(α, α′ f) at 480 MeV bombarding energy. The reaction mechanism of this reaction is discussed for excitation energies belowB nf , the threshold for second chance fission, and aboveB nf up toE x =37 MeV. In comparing with results from fission induced by photons and by particle transfer reactions the (α, α′f) reaction gives too low values for the fission probabilityP f at excitation energies well aboveB nE . The role of the quasi-elastic knock-out process in this reaction is discussed.  相似文献   

11.
The production of superheavy elements in binary reactions of the type208Pb (136Xe, X) Y was investigated atE c.m.=470 MeV. The experiment was designed to search for delayed fission products from elements withZ between 108 and 116 and fission lifetimes ofΤ?10?12 s. No fission events were observed the upper limit for the formation cross section being 1.2 Μbarn.  相似文献   

12.
Fragment mass and kinetic energy distributions have been measured for isomeric fission of 240Pu. The mass distribution is asymmetric with the average heavy fragment mass nearly equal to that found for ground state spontaneous fission of 240Pu, but slightly lower than for nth + 239Pu-fission. The average total fragment kinetic energy appears to be higher in isomeric fission (179.5?0.7+1.5 MeV) than in spontaneous fission from the ground state (176.8 ± 1.8 MeV).  相似文献   

13.
A dynamical-statistical model is used to analyze the experimental angular distributions of fission fragments in the reactions α + 238U, 237Np at E α = 20–100 MeV, as well as to determine the Am isotope fission probabilities and the shape isomer yields in the reactions d + 242,240Pu at E d = 20–30 MeV. Manifestations of shell effects are found in the fission barrier structure up to the excitation energies of 50–60 MeV.  相似文献   

14.
The ratios of prompt to delayed fission yields for the isotopes233U,234U,235U,236U,238U,237Np,242Pu, and244Pu and the fission probabilities relative to each other have been investigated experimentally. Using the value of the total fission probability for237Np the absolute probabilities for prompt and delayed fission have been determined. The fission probabilities per muon captureP fc have been derived for all the isotopes and compared with an evaluation based on excitation functions from theory.  相似文献   

15.
It was shown previously that the fission lifetime of a nucleus excited to about 100 MeV depends strongly and nonmonotonically on the initial value of its angular momentum L 0. This result was obtained on the basis of a refined version of the combined dynamical and statistical model. The present study is devoted to a theoretical analysis of the dependence of the fission time on the nucleonic composition of the nucleus involved. The respective calculations were performed within the same model. The dependence of the average fission time 〈t f 〉 on the initial fissility parameter (Z 2/A)0 appears to be of a resonance type and is similar to its dependence on L 0. This dependence of the average fission time on (Z 2/A)0 stems both from statistical calculations and from a dynamical simulation of the fission mode with allowance for friction. The conditions under which the average fission time reaches a maximum are specified. The dependence of the average fission time on (Z 2/A)0 remains nonmonotonic in the fusion-fission reaction as well, in which case the distribution of compound nuclei with respect to the initial angular momentum is broad.  相似文献   

16.
Integral fission cross sections in the system238U+238U were measured at beam energies below the interaction barrierV C. Scattering angle dependent probabilities and integral cross sections for Coulomb fission were calculated. It is concluded that earlier observed discrepancies between measured and calculated angular distributions for the one-neutron transfer product239U cannot be explained by sequential fission. Multi-nucleon transfer induced fission is observed down to energies (0.90±0.02)×VC.  相似文献   

17.
A fission isomer with a half-life of 115 ± 5 ns and a yield ratio Yiso/Yprompt = (2.02 ± 0.16) × 10?5 was observed in bremsstrahlung-induced fission of natural uranium. The isomer is ascribed to 236U populated via a 238U(γ, 2n) reaction. The integrated cross section for isomeric fission is determined to be σint = 32 ± 6 μb MeV. Comparing this value with a calculated total isomer production cross section, a branching ratio of the isomer decay of ΓγII/ΓfII ≈ 6 can be deduced.  相似文献   

18.
The fission fragment angular distributions from reactions of 140-MeV4He ions with238U,209Bi and197Au have been studied. From the anisotropies in the angular distributions, values for? eff, the effective moment of inertia at the fission saddle point, have been estimated and compared with results obtained at lower bombarding energies. The derivation of? eff values has included corrections for the effects of incomplete fusion mechanisms on the orbital angular momentum distribution of the fissioning nuclei and for neutron evaporation prior to fission. The results are also compared with heavy-ion-induced fission data for systems of similar fissility. Also, examination of the forward-backward symmetry of the238U angular distribution substantiates other results which show that the fraction of fission reactions which follow complete fusion of the target and projectile is less than 0.5 for 140-MeV4He-ion bombardment of238U.  相似文献   

19.
20.
Beta delayed fission (βDF) gives a possibility to investigate the fission barrier for nuclei far off beta stability. However, before any information on the fission barrier can be extracted, the effect of low-lying structures in the beta-strength function (S β) on theβDF branching ratio has to be considered. This is in general not done. In this paper the lowlying structures that occur inS β are discussed and microscopic calculations for the Gamow-Teller strength function are presented for232Th (β ?-decay) and232Pu,240Cm,244,248Cf and248Fm (β +-decay). Using the calculated strength functionsβ +DF branching ratios are calculated and compared with the experimental ones. The sensitivity of the results to different shapes ofS β is investigated. It is concluded that, when the expected structures inS β are considered, there are at present no indications fromβ + DF measurements that the errors in the fission barrier calculations are larger than the uncertainty given for those calculations. The difference in magnitude between theβ ? DF and theβ +DF branching ratios is also explained by the occurrence of low-lying structures inS β.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号