首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文以结晶紫、吖啶橙为光敏化剂,以N—对甲苯磺酰基-7-氮杂-双环[2.2.1]-2,5-庚二烯-2,3-二羧酸二甲酯(NNBD)为反应底物,测定了NNBD光敏异构化反应的转化率及量于产率。通过荧光谱和NNBD对敏化剂的荧光猝灭试验,根据weller电子转移理论对NNBD的光敏异构化机理进行了探讨。  相似文献   

2.
1,2,4-Triphenylbenzene and 2,2'-methylenedioxy-1,1'-binaphthalene successfully photosensitized the aminations of 1,2-benzo-1,3-cycloalkadienes, arylcyclopropanes, and quadricyclane with ammonia and primary amines in the presence of m- or p-dicyanobenzene, which gave the 4-amino-1,2-benzocycloalkenes, 3-amino-1-arylpropanes, and 7-amino-5-(p-cyanophenyl)bicyclo[2.2.1]hept-2-ene, respectively. A key pathway for the photosensitized amination is the hole transfer from the cation radicals of the sensitizers that were generated by photoinduced electron transfer to the electron acceptors to the substrates. Therefore, it was found that the relationships in oxidation potentials between the sensitizers and the substrates and the positive charge distribution of the cation radicals of the substrates were important factors for the efficient amination.  相似文献   

3.
A novel dark resonance energy transfer (DRET) off–on cassette SR1 was constructed by coupling a silole donor with a rhodamine acceptor. Due to the intramolecular rotations of the phenyl rings, the silole fluorophore served as a dark donor in solution state and fluorescence leakage from the donor emission could be avoided. Binding with Sn4+ ion induced the ring‐opening of the rhodamine acceptor, thus increase the overlapping between the emission spectra of the donor and absorption spectra of the acceptor. DRET was turned on and energy was transferred from the silole donor to the rhodamine acceptor. Emission from the rhodamine acceptor was achieved with a large Stokes shift up to 198 nm. The sensor showed good sensitivity and selectivity towards Sn4+ to other metal ions in methanol aqueous solution through the formation of a 1:1 complex between SR1 and Sn4+. This research provides a new approach for the development of rhodamine‐based sensors towards metal ions with large Stokes shifts.  相似文献   

4.
After rapid photoinduced electron injection into TiO2 and regeneration by a donor, D, such as iodide or phenothiazine, sensitizers are present in an environment distinctly different from that prior to light absorption. Significantly, the absorption spectrum of the Ru(II) sensitizer in this new environment is one that is known to be less favorable for excited-state electron injection. The transient absorption features were found to report on photoinduced variations in the local electronic environment of the Ru(II) sensitizer-TiO2 interface that were induced by ion transfer. The data demonstrate that slow (micros to ms) cation transfer follows regeneration to yield the sensitizer that was initially photoexcited.  相似文献   

5.
The photo-oxidation of perylene in aqueous solutions of a polymeric photocatalyst was investigated to probe the mechanism of polycyclic aromatic hydrocarbon degradation. Perylene and other hydrophobic molecules are efficiently solubilized in aqueous polymer solutions with distribution coefficients as high as 4 x 106. The rate of perylene photo-oxidation was much more rapid in aqueous polymer solutions than in organic solvents. In organic solvents, 102 sensitizers (rose bengal) had little effect on the reaction, but electron acceptors, such as dicyanobenzene, caused an acceleration in rate. Naphthoquinone was suggested as a potential electron acceptor in the naphthalene-containing polymer, and it was shown to be formed in small concentrations by polymer oxidation. It was concluded that the polymer plays several key functions in perylene photo-oxidation: (1) solubilization of the hydrophobic molecule; (2) energy migration through the polymer coil and energy transfer, providing additional photochemical energy to the reactants; (3) the enhancement of oxidation by photoinduced electron transfer via provision of an electron acceptor and facilitation of charge separation.  相似文献   

6.
In this article, hemicyanine dye–borate complexes, for example, 1,3‐dimethyl‐2‐[4‐(N,N‐dialkylamino)styryl]benzimidazolium phenyl‐tri‐n‐butylborates, were employed as the novel, very effective photoinitiators operating in the visible light region. The influence of the sensitizers and electron donor structure on the photopolymerization kinetics of multiacrylate monomer was investigated by photo‐DSC. The maximum photopolymerization quantum yield measured for 2‐ethyl‐2‐(hydroxymethyl)‐1,3‐propanediol triacrylate (TMPTA) was about 67 for sample of thickness of about 1 mm under 100 mW/cm2 laser irradiation. It was found that the polymerization rate and the final conversion degree were depended on the dye structure. Moreover, the photoinitiating systems described gave a double bond conversion higher than the photoinitiator possessing as chromophore RBAX (Rose Bengal derivative), the common triplet state initiator. Additionally, the rate of photopolymerization depends on ΔGel of electron transfer between borate anion and styrylbenzimidazolium cation. This latter value was estimated for a series of styrylbenzimidazolium borate salts. The relationship between the rate of polymerization and the free energy of activation for electron transfer reaction gives the dependence predicted by the classical theory of electron transfer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4119–4129, 2009  相似文献   

7.
Applicability of silanols to dye-sensitized solar cells was investigated for the first time with bis(4-azobenzene)silanediol as a model compound. The silanol dye showed high adsorption ability on the surface of TiO2 electrode and effective electron transfer from the light-excited dye to the electrode was confirmed, exhibiting the effectiveness of the silanol dyes for the sensitizers.  相似文献   

8.
The work presented herein is devoted to the fabrication of large Stokes shift dyes in both organic and aqueous media by combining dark resonance energy transfer (DRET) and fluorescence resonance energy transfer (FRET) in one donor–acceptor system. In this respect, a series of donor–acceptor architectures of 4,4‐difluoro‐4‐bora‐3a,4a‐diaza‐s‐indacene (BODIPY) dyes substituted by one, two, or three tetraphenylethene (TPE) luminogens were designed and synthesised. The photophysical properties of these three chromophore systems were studied to provide insight into the nature of donor–acceptor interactions in both THF and aqueous media. Because the generation of emissive TPE donor(s) is strongly polarity dependent, due to its aggregation‐induced emission (AIE) feature, one might expect the formation of appreciable fluorescence emission intensity with a very large pseudo‐Stokes shift in aqueous media when considering FRET process. Interestingly, similar results were also recorded in THF for the chromophore systems, although the TPE fragment(s) of the dyes are non‐emissive. The explanation for this photophysical behaviour lies in the DRET. This is the first report on combining two energy‐transfer processes, namely, FRET and DRET, in one polarity‐sensitive donor–acceptor pair system. The accuracy of the dark‐emissive donor property of the TPE luminogen is also presented for the first time as a new feature for AIE phenomena.  相似文献   

9.
α‐Methylstyrene ( 1 ) was photo‐oxidized in the presence of a series of alkylated dimethoxybenzenes as sensitizers in an oxygen‐saturated MeCN solution to afford the cleaved ketone 2 , epoxide 3 , as well as a small amount of the ene product 4 in ca. 1 : 1 : 0.04 ratio. The relative rate of conversion was well‐correlated with the fluorescence quantum yield of sensitizers. Thus, a non‐singlet‐oxygen mechanism is proposed, in which an excited sensitizer is quenched by (ground‐state) molecular oxygen to produce a sensitizer radical cation and a superoxide ion (O), the former of which oxidizes the substrate, while the latter reacts with the resulting olefin radical cation ( 1 + .) to give the major oxidation products. Photodurability of such electron‐donating sensitizers is dramatically improved by substituting four aromatic H‐atoms in 1,4‐dimethoxybenzene with Me or fused alkyl groups, which provides us with an environmentally friendly, clean method of photochemical functionalization with molecular oxygen, alternative to the ene reaction via singlet oxygenation.  相似文献   

10.
The geometries, electronic structures and the electronic absorption spectra of three kinds of ruthenium complexes, which contain tridentate bipyridine-pyrazolate ancillary ligands, were studied using density functional theory (DFT) and time-dependent DFT. The calculated results indicate that: (1) the strong conjugated effects are formed across the pyrazoalte-bipyridine groups; (2) the interfacial electron transfer between electrode and the dye sensitizers is an electron injection processes from the excited dyes to the conduction band of TiO2; (3) the absorption bands in visible region have a mixed character of metal-to-ligand charge transfer and ligand-to-ligand charge transfer, but the main character of absorption bands near UV region ascribe to π→π* transitions; (4) introducing pyrazolate and -NCS groups are favorable for intra-molecular charge transfer, and they are main chromophores that contribute to the sensitization of photon-to-current conversion processes, but introducing -Cl and the terminal group -CF3 are unfavorable to improve the dye performance in dye sensitized solar cells.  相似文献   

11.
We designed two near-infrared (NIR) lanthanide complexes [( L )2-Nd(NO3)3] ( L =TPE2-BPY for 1 , TPE-BPY for 2 ) by employing aggregation-induced emission (AIE)-active tetraphenylethylene (TPE) derivatives as sensitizers, which possessed matched energy to NdIII, prevented competitive deactivation under aggregation, even shifted the excitation window toward 600 nm by twisted intramolecular charge transfer. Furthermore, benefiting from the 4 f electron shielding effect and antenna effect, the enhanced excitation energies of the AIE-active sensitizers by structural rigidification transferred into the inert NdIII excited state through 3LMCT, affording the first aggregation-induced phosphorescence enhancement (AIPE)-active discrete NIR-emitting lanthanide complexes. As 1 equipped with more AIE-active TPE than 2 , L →Nd energy transfer efficiency in the former was higher than that in the latter under the same conditions. Consequently, the crystal of 1 exhibited one of the longest lifetimes (9.69 μs) among NdIII-based complexes containing C−H bonds.  相似文献   

12.
Four tripodal sensitizers, Ru(bpy)(2)(Ad-tripod-phen)(2+) (1), Ru(bpy)(2)(Ad-tripod-bpy)(2+) (2), Ru(bpy)(2)(C-tripod-phen)(2+) (3), and Ru(bpy)(2)(C-tripod-bpy)(2+) (4) (where bpy is 2,2'-bipyridine, phen is 1,10-phenanthroline, and Ad-tripod-bpy (phen) and C-tripod-bpy (phen) are tripod-shaped bpy (phen) ligands based on 1,3,5,7-tetraphenyladamantane and tetraphenylmethane, respectively), have been synthesized and characterized. The tripodal sensitizers consist of a rigid-rod arm linked to a Ru(II)-polypyridine complex at one end and three COOR groups on the other end that bind to metal oxide nanoparticle surfaces. The excited-state and redox properties of solvated and surface-bound 1-4 have been studied at room temperature. The absorption spectra, emission spectra, and electrochemical properties of 1-4 in acetonitrile solution are preserved when 1-4 are bound to nanocrystalline (anatase) TiO(2) or colloidal ZrO(2) mesoporous films. This behavior is indicative of weak electronic coupling between TiO(2) and the sensitizer. The kinetics for excited-state decay are exponential for 1-4 in solution and are nonexponential when 1-4 are bound to ZrO(2) or TiO(2). Efficient and rapid (k(cs) > 10(8) s(-)(1)) excited-state electron injection is observed for 1-4/TiO(2). The recombination of the injected electron with the oxidized Ru(III) center is well described by a second-order kinetic model with rate constants that are independent of the sensitizer. The sensitizers bound to TiO(2) were reversibly oxidized electrochemically with an apparent diffusion coefficient approximately 1 x 10(-11) cm(2) s(-)(1).  相似文献   

13.
The synthesis and photophysical properties of a new series of dicationic electron transfer sensitizers have been reported. These new materials, pyrylogens, are hybrids of pyrylium cations and Viologen dications. Electron transfer reactions of neutral organic substrates using these new sensitizers generate radical-cation/radical-cation pairs whose repulsive (repellent) interaction is designed to compete with energy wasting return electron transfer (RET) by enhancing diffusive separation and formation of solvent separated ions.  相似文献   

14.
Quantum dot-sensitized solar cells (QDSCs) constructed using cascade CdS/CdSe sensitizers and the novel tetrapod-like ZnO nanoparticles have been fabricated. The cascade co-sensitized QDSCs manifested good electron transfer dynamics and overall power conversion efficiency, compared to single CdS- or CdSe-sensitized cells. The preliminary CdS layer is not only energetically favorable to electron transfer but behaves as a passivation layer to diminish the formation of interfacial defects during CdSe synthesis. On the other hand, the anisotropic tetrapod-like ZnO nanoparticles, with a high electron diffusion coefficient, can afford a better carrier transport than traditional ZnO nanoparticles. The resultant solar cell yielded an excellent performance with a solar power conversion efficiency of 4.24% under simulated one sun (AM1.5G, 100 mW cm(-2)) illumination.  相似文献   

15.
The photoinduced oxidation of 1-naphthol to 1,4-naphthoquinone and of 5-hydroxy-1-naphthol to 5-hydroxy-1,4-naphthoquinone was studied by steady-state and time-resolved techniques. The direct photooxidation of naphthols in methanol or water takes place by reaction of the naphoxyl radical ((?)ONaph) with the superoxide ion radical (O(2)(?-)), the latter of which results from the reaction of the solvated electron with oxygen after photoionization. The sensitized oxidation takes place by energy transfer from the xanthene triplet state to oxygen. From the two oxygen atoms, which are consumed, one is incorporated into the naphthol molecule giving naphthoquinone and the second gives rise to water. The effects of eosin, erythrosin, and rose bengal in aqueous solution, pH, and the oxygen and naphthol concentrations were studied. The quantum yield of the photosensitized transformation was determined, which increases with the naphthol concentration and is largest at pH > 10. The quantum yield of oxygen uptake is similar. The pathway involving singlet molecular oxygen is suggested to operate for the three sensitizers. The alternative pathway via electron transfer from the naphthol to the xanthene triplet state and subsequent reaction of (?)ONaph with O(2)(?-), the latter of which is formed by scavenging of the xanthene radical anion by oxygen, does also contribute.  相似文献   

16.
Triplet-triplet annihilation (TTA) based upconversions are attractive as a result of their readily tunable excitation/emission wavelength, low excitation power density, and high upconversion quantum yield. For TTA upconversion, triplet sensitizers and acceptors are combined to harvest the irradiation energy and to acquire emission at higher energy through triplet-triplet energy transfer (TTET) and TTA processes. Currently the triplet sensitizers are limited to the phosphorescent transition metal complexes, for which the tuning of UV-vis absorption and T(1) excited state energy level is difficult. Herein for the first time we proposed a library of organic triplet sensitizers based on a single chromophore of boron-dipyrromethene (BODIPY). The organic sensitizers show intense UV-vis absorptions at 510-629 nm (ε up to 180,000 M(-1) cm(-1)). Long-lived triplet excited state (τ(T) up to 66.3 μs) is populated upon excitation of the sensitizers, proved by nanosecond time-resolved transient difference absorption spectra and DFT calculations. With perylene or 1-chloro-9,10-bis(phenylethynyl)anthracene (1CBPEA) as the triplet acceptors, significant upconversion (Φ(UC) up to 6.1%) was observed for solution samples and polymer films, and the anti-Stokes shift was up to 0.56 eV. Our results pave the way for the design of organic triplet sensitizers and their applications in photovoltaics and upconversions, etc.  相似文献   

17.
A series of new triarylamine‐based platinum‐acetylide complexes ( WY s) have been designed and synthesized as new sensitizers for applications in dye‐sensitized solar cells (DSSCs). With the aim of investigating the effect of a rigidifying donor structure on the photoelectrical parameters of the corresponding DSSCs, two new sensitizers, WY1 and WY2 , with rigid and coplanar fluorene units as an electron donor, were prepared. Moreover, two sensitizers that contained triphenylamine units as an electron donor, WY3 and WY4 , were also synthesized for comparison. The photo‐ and electrochemical properties of all of these new complexes have been extensively explored. We found that the dimethyl‐fluorene unit exhibited a stronger electron‐donating ability and better photovoltaic performance compared to the triphenylamine unit, owing to its rigidifying structure, which restricted the rotation of σ bonds, thus increasing the conjugation efficiency. Furthermore, WY2 , which contained a dimethyl‐fluorene unit as an electron donor and bithiophene as a π bridge, showed a relatively high open‐circuit voltage (Voc) of 640 mV and a PCE of 4.09 %. This work has not only expanded the choice of platinum‐acetylide sensitizers, but also demonstrates the advantages of restricted rotation of donor σ bonds for improved behavior of the corresponding DSSCs.  相似文献   

18.
During the aerobic reaction of soybean lipoxygenase with polyunsaturated fatty acids (linoleic, linolenic, and arachidonic acid) oxygen uptake is followed by excited carbonyl photoemission. The chemiluminescence yield of phi cl = 10(-10) photons/O2 molecule consumed is enhanced 2-3 orders of magnitude by the carbonyl sensitizers 9,10-dibromo-anthracene-2-sulfonate (kET tau 0 = 10(4) M-1; phi cl = 10(-8) photons/O2) and chlorophyll-a (kET tau 0 = 10(6) M-1; phi cl = 10(-7) photons/O2), respectively. alpha,beta-Saturated triplet excited carbonyls as from 1,2-dioxetane cleavage are discussed to arise from a secondary peroxidase/oxidase reaction with aldehydes formed in the course of enzymic lipid peroxidation. When 1 mM glutathione is added to the aerobic lipoxygenase/arachidonate reaction, carbonyl emission (375-455 nm) is replaced by intense red bands (630-645 nm and 695-715 nm) resembling the characteristic spectrum of (1 delta g)O2-singlet oxygen dimol-emission. The quantum yield (phi cl = 10(-8) photons/O2) remains unaffected by chlorophyll indicating that the red emission is independent of excited carbonyls. The effect of GSH is attributed to dioxetane interception and subsequent glutathione peroxidation generating 1O2 by electron transfer from the superoxide anion radical to a peroxysulfenyl radical.  相似文献   

19.
Novel unsymmetrical organic sensitizers comprising donor, electron-conducting, and anchoring groups were engineered at a molecular level and synthesized for sensitization of mesoscopic titanium dioxide injection solar cells. The unsymmetrical organic sensitizers 3-(5-(4-(diphenylamino)styryl)thiophen-2-yl)-2-cyanoacrylic acid (D5), 3-(5-bis(4-(diphenylamino)styryl)thiophen-2-yl)-2-cyanoacrylic acid (D7), 5-(4-(bis(4-methoxyphenylamino)styryl)thiophen-2-yl)-2-cyanoacrylic acid (D9), and 3-(5-bis(4,4'-dimethoxydiphenylamino)styryl)thiophen-2-yl)-2-cyanoacrylic acid (D11) anchored onto TiO2 and were tested in dye-sensitized solar cell with a volatile electrolyte. The monochromatic incident photon-to-current conversion efficiency of these sensitizers is above 80%, and D11-sensitized solar cells yield a short-circuit photocurrent density of 13.90 +/- 0.2 mA/cm(2), an open-circuit voltage of 740 +/- 10 mV, and a fill factor of 0.70 +/- 0.02, corresponding to an overall conversion efficiency of 7.20% under standard AM 1.5 sun light. Detailed investigations of these sensitizers reveal that the long electron lifetime is responsible for differences in observed open-circuit potential of the cell. As an alternative to liquid electrolyte cells, a solid-state organic hole transporter is used in combination with the D9 sensitizer, which exhibited an efficiency of 3.25%. Density functional theory/time-dependent density functional theory calculations have been employed to gain insight into the electronic structure and excited states of the investigated species.  相似文献   

20.
Two novel heteroleptic sensitizers, Ru((4,4-dicarboxylic acid-2,2'-bipyridine)(4,4'-bis(p-hexyloxystyryl)-2,2-bipyridine)(NCS)2 and Ru((4,4-dicarboxylic acid-2,2'-bipyridine)(4,4'-bis(p-methoxystyryl)-2,2'-bipyridine) (NCS)2, coded as K-19 and K-73, respectively, have been synthesized and characterized by 1H NMR, FTIR, UV-vis absorption, and emission spectroscopy and excited-state lifetime and spectroelectrochemical measurements. The introduction of the alkoxystyryl group extends the conjugation of the bipyridine donor ligand increasing markedly their molar extinction coefficient and solar light harvesting capacity. The dynamics of photoinduced charge separation following electronic excitation of the K-19 dye was scrutinized by time-resolved laser spectroscopy. The electron transfer from K-19 to the conduction band of TiO2 is completed within 20 fs while charge recombination has a half-life time of 800 s. The high extinction coefficients of these sensitizers enable realization of a new generation of a thin film dye sensitized solar cell (DSC) yielding high conversion efficiency at full sunlight even with viscous electrolytes based on ionic liquids or nonvolatile solvents. An unprecedented yield of over 9% was obtained under standard reporting conditions (simulated global air mass 1.5 sunlight at 1000 W/m2 intensity) when the K-73 sensitizer was combined with a nonvolatile "robust" electrolyte. The K-19 dye gave a conversion yield of 7.1% when used in conjunction with the binary ionic liquid electrolyte. These devices exhibit excellent stability under light soaking at 60 degrees C. The effect of the mesoscopic TiO2 film thickness on photovoltaic performance has been analyzed by electrochemical impedance spectroscopy (EIS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号