首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and sensitive method has been developed using preconcentration technique solid phase microextraction (SPME) and analytical technique HPLC-UV for the determination of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from the environmental samples. Aqueous solution of anionic surfactant SDS was used for the extraction of both nitramine high explosives, viz., HMX and RDX from soil samples which were subsequently sorbed on SPME fiber. The static desorption was carried out in the desorption chamber of the SPME-HPLC interface in the presence of mobile phase ACN/methanol/water (30:35:35) and the subsequent chromatographic analysis at a flow rate of 0.5 mL/min and detection at 230 nm. For this purpose, a C(18), 5 microm RP analytical column was used as a separation medium in this method. Several parameters relating to SPME, e.g., adsorption/desorption time, concentration of salt, stirring rate, etc., were optimized. The method was linear over the range of 20-400 ng/mL for HMX and RDX standards in the presence of surfactant in aqueous phase, respectively. The correlation coefficient (R(2)) for HMX and RDX are 0.9998 and 0.9982, respectively. With SPME, the detection limits (S/N = 3) in ng/mL are 0.05 and 0.1 for HMX and RDX, respectively in the presence of the SDS surfactant. The developed method has been applied successfully to the analysis of real environmental samples like bore well water, river water, and ground alluvial soil.  相似文献   

2.
The cyclic nitramine explosives hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine (HMX) were examined in field and microcosm soil samples to determine their patterns of degradation and environmental fates. A number of analytical techniques, including solid-phase microextraction with on-fiber derivatization, gas chromatography-mass spectrometry, gas chromatography with electron-capture detection, liquid chromatography-mass spectrometry, and micellar electrokinetic chromatography were required for the analyses. Two different classes of intermediates were detected, both of which lead ultimately to the formation of nitrous oxide (N2O) and carbon dioxide (CO2). The first class was identified as the nitroso derivatives formed by the sequential reduction of -NO2 functional groups. The second class of intermediates, which was favored at higher humidities and in the presence of anaerobic sludge amendments, consisted of ring cleavage products including bis-(hydroxymethyl)-nitramine and methylenedinitramine. Rye-grass (Lolium perenne) present in field samples was found to extract and accumulate HMX from soil without further degradation. In all cases (excepting the plant samples), the indigenous microbes or amended domestic anaerobic sludge consortia degraded the cyclic nitramine explosives eventually to produce N2O and CO2.  相似文献   

3.
Pyridine, tetramethylguanidine, and hexamethylphosphoramide were evaluated as solvents for the microdetermination of two weakly acidic compounds of ordnance interest, 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX). The titrant was tetrabutylammonium hydroxide in methanol/ toluene. Endpoints were determined potentiometrically by a glass/modified calomel electrode system or by two polarized platinum electrodes.The largest potentiometric break was found in the very basic solvent tetramethylguanidine. Endpoint detection using two polarized platinum electrodes significantly enhanced the precision of the analysis.  相似文献   

4.
Detection of explosives and their degradation products in soil environments   总被引:2,自引:0,他引:2  
Polynitro organic explosives [hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and 2,4,6-trinitrotoluene (TNT)] are typical labile environmental pollutants that can biotransform with soil indigenous microorganisms, photodegrade by sunlight and migrate through subsurface soil to cause groundwater contamination. To be able to determine the type and concentration of explosives and their (bio)transformation products in different soil environments, a comprehensive analytical methodology of sample preparation, separation and detection is thus required. The present paper describes the use of supercritical carbon dioxide (SC-CO2), acetonitrile (MeCN) (US Environmental Protection Agency Method 8330) and solid-phase microextraction (SPME) for the extraction of explosives and their degradation products from various water, soil and plant tissue samples for subsequent analysis by either HPLC-UV, capillary electrophoresis (CE-UV) or GC-MS. Contaminated surface and subsurface soil and groundwater were collected from either a TNT manufacturing facility or an anti-tank firing range. Plant tissue samples were taken fromplants grown in anti-tank firing range soil in a greenhouse experiment. All tested soil and groundwater samples from the former TNT manufacturing plant were found to contain TNT and some of its amino reduced and partially denitrated products. Their concentrations as determined by SPME-GC-MS and LC-UV depended on the location of sampling at the site. In the case of plant tissues, SC-CO2 extraction followed by CE-UV analysis showed only the presence of HMX. The concentrations of HMX (<200 mg/kg) as determined by supercritical fluid extraction (SC-CO2)-CE-UV were comparable to those obtained by MeCN extraction, although the latter technique was found to be more efficient at higher concentrations (>300 mg/kg). Modifiers such as MeCN and water enhanced the SC-CO2 extractability of HMX from plant tissues.  相似文献   

5.
Olivier Vigneau 《Talanta》2009,77(5):1609-1058
The introduction of chloroform into the nebulising gas of a LC/MS electrospray interface (ESI), in a perfectly controlled way, leads to the formation of intense adducts ([M+Cl]) when a mobile phase containing HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane or octogen) and RDX (1,3,5-trintro-1,3,5-triazacyclohexane or hexogen) is eluted. This LC/MS method allows the direct analysis of aqueous samples containing HMX and RDX at the pictogram level without a concentration step. The method is used to determine HMX and RDX concentrations in ground water samples from a military site.  相似文献   

6.
A sulfobutyl ether-beta-cyclodextrin-assisted electrokinetic chromatographic method was developed to rapidly resolve and detect the cyclic nitramine explosives 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaaza-isowurtzitane (CL-20), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and their related degradation intermediates in environmental samples. Development of the electrophoretic method required the measurement of the aqueous solubility of CL-20 which was determined to be 3.59 +/- 0.74 mg/l at 25 degrees C (95% confidence interval, n=3). The performance of the method was then compared to results obtained from existing high-performance liquid chromatography methods including US Environmental Protection Agency method 8330.  相似文献   

7.
An analytical method based on the cloud point extraction combined with high performance liquid chromatography is used for the extraction, separation and determination of four explosives; octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazine (HMX), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 2,4,6-trinitrotoluene (TNT) and pentaerythritol tetranitrate (PETN). These compounds are extracted by using of Triton X-114 and cetyl-trimethyl ammonium bromide (CTAB). After extraction, the samples were analyzed using a HPLC-UV system. The parameters affecting extraction efficiency (such as Triton X-114 and CTAB concentrations, amount of Na2SO4, temperature, incubation and centrifuge times) were evaluated and optimized. Under the optimum conditions, the preconcentration factor was 40 and the improvement factors of 34, 29, 61 and 42 with detection limits of 0.09, 0.14, 0.08 and 0.40 (μg L−1) were obtained for HMX, RDX, TNT and PETN, respectively. The proposed method was successfully applied to the determination of these compounds in water samples and showed recovery percentages of 97-102% with RSD values of 2.13-4.92%.  相似文献   

8.
The insensitive property of explosives containing pyridine is combined with the high energy of nitramine explosives,and the concept of new nitramine explosives containing pyridine is proposed,into which nitramine group with N N bonds is introduced as much as possible.Based on molecular structures of nitramine compounds containing pyridine,density functional theory(DFT) calculation method was applied to study designed molecules at B3LYP/6-31+G(d) level.The geometric and electronic structures,density,heats of formation(HOF),detonation performance and bond dissociation energies(BDE) were investigated and comparable to 1,3,5-trinitro-1,3,5-triazinane(RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetrazocane(HMX).The simulation results reveal that molecules B and D perform similarly to traditionally used RDX.Molecule E outperform RDX,with performance that approach that of HMX and may be considered as potential candidate of high energy density compound(HEDC).These results provide basic information for molecular design of novel high energetic density compounds.  相似文献   

9.
Theoretically new high‐energy‐density materials (HEDM) in which the hydrogens on RDX and β‐HMX (hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine and octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine, respectively) were sequentially replaced by (N NO2)x functional groups were designed and evaluated using density functional theory calculations in combination with the Kamlet–Jacobs equations and an atoms‐in‐molecules (AIM) analysis. Improved detonation properties and reduced sensitivity compared to RDX and β‐HMX were predicted. Interestingly, the RDX and β‐HMX derivatives having one attached N NO2 group [RDX‐(NNO2)1 and HMX‐(NNO2)1] showed excellent detonation properties (detonation velocities: 9.529 and 9.575 km·s−1, and detonation pressures: 40.818 and 41.570 GPa, respectively), which were superior to the parent compounds. Sensitivity estimations obtained by calculating impact sensitivities and HOMO‐LUMO gaps indicated that RDX‐(NNO2)1 and HMX‐(NNO2)1 were less stable than RDX and HMX but more stable than any of the other derivatives. This method of sequential NNO2 group attachment on conventional HEDMs offers a firm basis for further studies on the design of new explosives. Furthermore, the newly found structures may be promising candidates for better HEDMs.  相似文献   

10.
《Vibrational Spectroscopy》2007,43(2):243-248
We have measured the terahertz absorption spectra of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX), pentaerythritol tetranitrate (PETN), 1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX), 2,4,6-trinitrotoluene (TNT), the plastic explosives Semtex H, SX2, and Metabel, and a number of confusion materials using terahertz pulsed transmission spectroscopy. Spectral fingerprints were obtained from 3 to 133 cm−1. The spectra of the plastic explosives are dominated by the spectral signatures of their explosive components due to low frequency vibrations and crystalline phonon modes. Importantly, the terahertz spectra of the confusion materials show no resemblance to the explosives spectra. The refractive indices obtained for the plastic explosives and confusion materials allowed us to derive reflectance spectra, which appear distinct and so suggest that terahertz reflection spectroscopy is a suitable tool for the detection of concealed explosives in security applications.  相似文献   

11.
Ultraviolet excitation (8-ns duration) is employed to study the decomposition of RDX (1,3,5-trinitro-1,3,5-triazacyclohexane) and HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane) from their first excited electronic states. Isolated RDX and HMX are generated in the gas phase utilizing a combination of matrix-assisted laser desorption and supersonic jet expansion techniques. The NO molecule is observed as one of the initial dissociation products by both time-of-flight mass spectroscopy and laser-induced fluorescence spectroscopy. Four different vibronic transitions of NO are observed: A (2)Sigma(v(') = 0)<--X (2)Pi(v(") = 0,1,2,3). Simulations of the NO rovibronic intensities for the A<--X transitions show that dissociated NO from RDX and HMX is rotationally cold (approximately 20 K) and vibrationally hot (approximately 1800 K). Another potential initial product of RDX and HMX excited state dissociation could be OH, generated along with NO, perhaps from a HONO intermediate species. The OH radical is not observed in fluorescence even though its transition intensity is calculated to be 1.5 times that found for NO per radical generated. The HONO intermediate is thereby found not to be an important pathway for the excited electronic state decomposition of these cyclic nitramines.  相似文献   

12.
Nano-scale crystal defects extremely affect the security and reliability of explosive charges of weapons. In this work, the nano-scale crystal defects of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) single crystals were characterized by two-dimension SAXS. Deducing from the changes of SAXS pattern with sample stage rotating, we firstly found the parallel lamellar nano-scale defects in both RDX and HMX single crystals. Further analysis shows that the average diameter and thickness of nano-scale lamellar defects for RDX single crystal are 66.4 nm and 19.3 nm, respectively. The results of X-ray diffraction (XRD) indicate that the lamellar nano-scale defects distribute along the (001) in RDX and the (011) in HMX, which are verified to be the crystal planes with the lowest binding energy by the theoretical calculation.  相似文献   

13.
Walsh ME 《Talanta》2001,54(3):427-438
Hazardous waste site characterization, forensic investigations, and land mine detection are scenarios where soils may be collected and analyzed for traces of nitroaromatic, nitramine, and nitrate ester explosives. These thermally labile analytes are traditionally determined by high-performance liquid chromatography (HPLC); however, commercially available deactivated injection port liners and wide-bore capillary columns have made routine analysis by gas chromatography (GC) possible. The electron-withdrawing nitro group common to each of these explosives makes the electron capture detector (ECD) suitable for determination of low concentrations of explosives in soil, water, and air. GC-ECD and HPLC-UV concentration estimates of explosives residues in field-contaminated soils from hazardous waste sites were compared, and correlation (r>0.97) was excellent between the two methods of analysis for each of the compounds most frequently detected: 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), 2,4-dinitrotoluene (2,4-DNT), 1,3-dinitrobenzene (1,3-DNB), 1,3,5-trinitrobenzene (TNB), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The analytes were extracted from soils with acetonitrile by 18 h of sonication in a cooled ultrasonic bath. Two soil-to-solvent ratios were evaluated: 2.00 g:10.00 ml and 25.0 g:50.0 ml. GC-ECD method detection limits were similar for the two soil-to-solvent ratios and were about 1 mug kg(-1) for the di- and trinitroaromatics, about 10 mug kg(-1) for the mono-nitroaromatics, 3 mug kg(-1) for RDX, 25 mug kg(-1) for HMX, and between 10 and 40 mug kg(-1) for the nitrate esters (nitroglycerine [NG] and pentaerythritol tetranitrate [PETN]). Spike recovery studies revealed artifacts introduced by the spiking procedure. Recoveries were low in some soils if the amount of soil spiked was large (25.0 g) compared to the volume of spike solution added (1.00 ml). Recoveries were close to 100% when 2.00-g soil samples were spiked with 1.00 ml of solution. Analytes most frequently found in soils collected near buried land mines were the microbial transformation products of TNT (2-amino-4,6-dinitrotoluene [2-Am-DNT] and 4-amino-2,6-dinitrotoluene [4-Am-DNT]), manufacturing impurities of TNT (2,4-DNT, 2,6-DNT, and 1,3-DNB), and TNT. The microbial reduction products of the isomers of DNT and of 1,3-DNB were also detected, but the ECD response to these compounds is poor.  相似文献   

14.
The cationic and anionic polymerization of 1,3,5-tri(1,3,5,7-tetra)methyl-1,3,5-tri (1,3,5,7-tetra)-10-carbomethoxydecylcyclotri (tetra) siloxane, catalyzed by sulfuric acid and alkali metal naphthalenes, respectively, was studied. With sulfuric acid the polymer yield increased with increasing catalyst concentration, while the molecular weights decreased. With potassium naphthalene the polymerization reaction was first order to monomer, and the molecular weights increased linearly with increasing the percent conversion in accordance with a “living” polymerization. In both cases the polymerization was an equilibrium reaction and the conversion was about 85%. Only low molecular weight polymers were obtained due to steric effects of the bulky long-chain substituents.  相似文献   

15.
A novel air-tight neutral desorption enclosure has been fabricated to noninvasively sample low picograms of explosives 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetraazocine (HMX), triacetone triperoxide (TATP), and nitroglycerin (NG) from human skin using a neutral nitrogen gas beam. Without further sample pretreatment, the explosive mixtures collected from the skin surface were directly transported by a nitrogen carrier gas over a 4-m distance for sensitive detection and rapid identification by extractive electrospray ionization tandem mass spectrometry.  相似文献   

16.
The development of rapid, efficient, and reliable detection methods for the characterization of energetic compounds is of high importance to security forces concerned with terrorist threats. With a mass spectrometric approach, characteristic ions can be produced by attaching anions to analyte molecules in the negative ion mode of electrospray ionization mass spectrometry (ESI‐MS). Under optimized conditions, formed anionic adducts can be detected with higher sensitivities as compared with the deprotonated molecules. Fundamental aspects pertaining to the formation of anionic adducts of 1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocane (HMX), 1,3,5‐trinitro‐1,3,5‐triazinane (RDX), pentaerythritol tetranitrate (PETN), nitroglycerin (NG), and 1,3,5‐trinitroso‐1,3,5‐triazinane energetic (R‐salt) compounds using various anions have been systematically studied by ESI‐MS and ESI tandem mass spectrometry (collision‐induced dissociation) experiments. Bracketing method results show that the gas‐phase acidities of PETN, RDX, and HMX fall between those of HF and acetic acid. Moreover, PETN and RDX are each less acidic than HMX in the gas phase. Nitroglycerin was found to be the most acidic among the nitrogen‐rich explosives studied. The ensemble of bracketing results allows the construction of the following ranking of gas‐phase acidities: PETN (1530‐1458 kJ/mol) > RDX (approximately 1458 kJ/mol) > HMX (approximately 1433 kJ/mol) > nitroglycerin (1427‐1327.8 kJ/mol).  相似文献   

17.
Pan X  Tian K  Jones LE  Cobb GP 《Talanta》2006,70(2):455-459
A simple, sensitive LC-ESI-MS method was optimized for quantitative analysis of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in environmental samples. Under negative ionization mode, HMX can form adduct ions with various organic acids and salts, including acetic acid, formic acid, propionic acid, ammonium nitrate, ammonium chloride, sodium nitrite, and sodium nitrate. Acetic acid was chosen as additive and the ion, [M + CH3COO] with m/z = 355 was used for selective ion monitoring (SIM) in this study. Good sensitivity was achieved with low acetic acid concentration in the mobile phase and relatively low capillary temperature. The method detection limit was 0.78 pg for HMX in standard solution. Linearity (R2 > 0.9998) was obtained at low concentrations (0.5-50 μg/L). This method has been used to determine HMX concentrations in water samples and lizard egg samples from an animal exposure study.  相似文献   

18.
Erçağ E  Uzer A  Eren S  Sağlam S  Filik H  Apak R 《Talanta》2011,85(4):2226-2232
Rapid and inexpensive sensing of explosive traces in soil and post-blast debris for environmental and criminological purposes with optical sensors has recently gained importance. The developed sensing method for nitro-aromatic and nitramine-based explosives is based on dropping an acetone solution of the analyte to an adsorbent surface, letting the solvent to dry, spraying an analytical reagent to produce a persistent spot, and indirectly measuring its reflectance by means of a miniature spectrometer. This method proved to be useful for on-site determination of nitro-aromatics (trinitrotoluene (TNT), 2,4,6-trinitrophenylmethylnitramine (tetryl) and dinitrotoluene (DNT)) and nitramines (1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX)) pre-adsorbed on a poly vinyl chloride (PVC) surface, with the use of different spray reagents for each group of explosives producing different colors. The calibration equations of the tested compounds as reflectance vs. concentration showed excellent linearity (correlation coefficient: 0.998-0.999). The linear quantification interval in terms of absolute quantity of analyte was 0.1-0.5 μg. The developed method was successfully tested for the analysis of military explosives Comp B and Octol, and was validated against high performance liquid chromatography (HPLC). The reflectometric sensing method could also be used for qualitative identification of the nitrated explosives on a chromatographic paper. The reagent-impregnated paper could also serve as sensor, enabling semi-quantitative determinations of TNT and tetryl.  相似文献   

19.
A quantitative liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method was developed for the analysis of the explosive, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). In negative ionization mode, HMX forms an acetate adduct ion [M + CH(3)COO](-), m/z 355, in the presence of a small amount of acetic acid in the mobile phase. The ESI collision-induced dissociation (CID) spectrum of m/z 355 was acquired and the transitions m/z 355 --> 147 and m/z 355 --> 174 were chosen for the determination of HMX in samples. Using this quantification technique, the method detection limit was 1.57 microg/L and good linearity was achieved in the range 5-500 microg/L. This method will help to unambiguously analyze environmentally relevant concentrations of HMX.  相似文献   

20.
Explosives such as 2,4,6-trinitrotoluene (TNT), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) are widely distributed environmental contaminants. Complete chromatographic separation is necessary in order to accurately determine and quantify explosives and their degradation products in environmental samples and in (bio)transformation studies. The present study describes a RP-HPLC method with diode array detection using a LC-8 guard column, a Supelcosil LC-8 chromatographic column, and a gradient elution system. This gradient method is capable of baseline separating the most commonly observed explosives and TNT transformation metabolites including 2,4,6-triaminotoluene (TAT) in a single run. The TNT metabolites separated were 2-hydroxylamino-4,6-dinitrotoluene, 4-hydroxylamino-2,6-dinitrotoluene, 2,4-dihydroxylamino-6-nitrotoluene, 4,4',6,6'-tetranitro-2,2'-azoxytoluene, 2,2',6,6'-tetranitro-4,4'-azoxytoluene, 4,4',6,6'-tetranitro-2,2'-azotoluene, 2,2',6,6'-tetranitro-4,4'-azotoluene, 2-amino-4,6-dinitrotoluene, 4-amino-2, 6-dinitrotoluene, 2,6-diamino-4-nitrotoluene, 2,4-diamino-6-nitrotoluene, and TAT. The same gradient method at a different column temperature can also be used to baseline separate the explosives targeted in the Environmental Protection Agency (EPA) Method 8330 with approximately 22% reduction in total run time and 48% decrease in solvent consumption compared to previously published methods. Good separation was also obtained when all TNT metabolites and EPA Method 8330 compounds (a total of 23 compounds) were analyzed together; only 2,6-DANT and HMX co-eluted in this case. The influence of temperature (35-55 degrees C) and the use of an ion-pair reagent on the chromatographic resolution and retention were investigated. Temperature was identified as the key parameter for optimal baseline separation. Increased temperature resulted in shorter retention times and better peak resolution especially for the aminoaromatics investigated. The use of an ion-pair reagent (octanesulfonic acid) generally resulted in longer retention times for compounds containing amine functional groups, more baseline noise, and decreased peak resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号