首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhang  Zhenguo  Ma  Xinxing  Hua  Hongxing  Liang  Xihui 《Nonlinear dynamics》2020,102(4):2229-2246
Nonlinear Dynamics - This paper presents a stochastic model for performing the uncertainty and sensitivity analysis of a Jeffcott rotor system with fixed-point rub-impact and multiple uncertain...  相似文献   

2.
A general model of a rub-impact rotor system is set up and supported by oil film journal bearings. The Jacobian matrix of the system response is used to calculate the Floquet multipliers, and the stability of periodic response is determined via the Floquet theory. The nonlinear dynamic characteristics of the system are investigated when the rotating speed and damping ratio is used as control parameter. The analysis methods are inclusive of bifurcation diagrams, Poincaré maps, phase plane portraits, power spectrums, and vibration responses of the rotor center and bearing center. The analysis reveals a complex dynamic behavior comprising periodic, multi-periodic, chaotic, and quasi-periodic response. The modeling results thus obtained by using the proposed method will contribute to understanding and controlling of the nonlinear dynamic behaviors of the rotor-bearing system.  相似文献   

3.
4.
5.
6.
A rotor-stator rubbing Jeffcott model of a rotor system with mass unbalance including the mass eccentricity and the initial permanent deflection was set up and the corresponding governing motion equation was derived by d’Alembert principle. Through the analytical method, the rubbing condition was analyzed. Whether the rub would happen and when the rub would happen were well solved. The amplitude of the rotor center was calculated, and the rubbing factor was introduced to determine whether the rub would happen or not for all rotating speeds. Rubbing speeds when rub began to happen were obtained. Parameters such as the mass eccentricity, the initial permanent deflection, damping coefficients, and the phase angle between the mass eccentricity and the permanent deflection were used to analyze their effect on the rubbing condition. Results were obtained and could be used to prevent the rubbing fault or decrease the damage of the rub and diagnose or balance the initial permanent deflection fault.  相似文献   

7.
Zhang  Yue  Liu  Suixian  Xiang  Ling  Hu  Aijun 《Nonlinear dynamics》2022,107(3):2133-2152
Nonlinear Dynamics - A dynamic modeling method for multi-disk rod fastening rotor system with rub-impact is proposed based on the structural characteristics of gas turbine and the rub-impact fault...  相似文献   

8.
A new HB (Harmonic Balance)/AFT (Alternating Frequency Time) method is further developed to obtain synchronous and subsynchronous whirling response of nonlinear MDOF rotor systems. Using the HBM, the nonlinear differential equations of a rotor system can be transformed to algebraic equations with unknown harmonic coefficients. A technique is applied to reduce the algebraic equations to only those of the nonlinear coordinates. Stability analysis of the periodic solutions is performed via perturbation of the solutions. To further reduce the computational time for the stability analysis, the reduced system parameters (mass, damping, and stiffness) are calculated in terms of the already known harmonic coefficients. For illustration, a simple MDOF rotor system with a piecewise-linear bearing clearance is used to demonstrate the accuracy of the calculated steady-state solutions and their bifurcation boundaries. Employing ideas from modern dynamics theory, the example MDOF nonlinear rotor system is shown to exhibit subsynchronous, quasi-periodic and chaotic whirling motions.  相似文献   

9.
In this paper, a nonlinear dynamic model of a quarter vehicle with nonlinear spring and damping is established. The dynamic characteristics of the vehicle system with external periodic excitation are theoretically investigated by the incremental harmonic balance method and Newmark method, and the accuracy of the incremental harmonic balance method is verified by comparing with the result of Newmark method. The influences of the damping coefficient, excitation amplitude and excitation frequency on the dynamic responses are analyzed. The results show that the vibration behaviors of the vehicle system can be control by adjusting appropriately system parameters with the damping coefficient, excitation amplitude and excitation frequency. The multi-valued properties, spur-harmonic response and hardening type nonlinear behavior are revealed in the presented amplitude-frequency curves. With the changing parameters, the transformation of chaotic motion, quasi-periodic motion and periodic motion is also observed. The conclusions can provide some available evidences for the design and improvement of the vehicle system.  相似文献   

10.
Many dynamical systems are subject to some form of non-smooth or discontinuous nonlinearity. One eminent example of such a nonlinearity is friction. This is caused by the fact that friction always opposes the direction of movement, thus changing sign when the sliding velocity changes sign. In this paper, a structure with friction-based seismic base isolation is regarded. Seismic base isolation can be employed to decouple a superstructure from the potentially hazardous surrounding ground motion. As a result, the seismic resistance of the superstructure can be improved. In this case study, the base isolation system is composed of linear laminated rubber bearings and viscous dampers and nonlinear friction elements. The nonlinear dynamic modelling of the base-isolated structure with the aid of constraint equations, is elaborated. Furthermore, the influence of the dynamic characteristics of the superstructure and the nonlinear modelling of the isolation system, on the total system’s dynamic response, is examined. Hereto, the effects of various modelling approaches are considered. Furthermore, the dynamic performance of the system is studied in both nonlinear transient and steady-state analyses. It is shown that, next to (and in correlation with) transient analyses, steady-state analyses can provide valuable insight in the discontinuous dynamic behaviour of the system. This case study illustrates the importance and development of nonlinear modelling and nonlinear analysis tools for non-smooth dynamical systems.  相似文献   

11.
12.
The object of this research aims at the hydraulic generator unit rotor system. According to fault problems of the generator rotor local rubbing caused by the parallel misalignment and mass eccentricity, a dynamic model for the rotor system coupled with misalignment and rub-impact is established. The dynamic behaviors of this system are investigated using numerical integral method, as the parallel misalignment, mass eccentricity and bearing stiffness vary. The nonlinear dynamic responses of the generator rotor and turbine rotor with coupling faults are analyzed by means of bifurcation diagrams, Poincaré maps, axis orbits, time histories and amplitude spectrum diagrams. Various nonlinear phenomena in the system, such as periodic, three-periodic and quasi-periodic motions, are studied with the change of the parallel misalignment. The results reveal that vibration characteristics of the rotor system with coupling faults are extremely complex and there are some low frequencies with large amplitude in the 0.3–0.4× components. As the increase in mass eccentricity, the interval of nonperiodic motions will be continuously moved forward. It suggests that the reduction in mass eccentricity or increase in bearing stiffness could preclude nonlinear vibration. These might provide some important theory references for safety operating and exact identification of the faults in rotating machinery.  相似文献   

13.
IntroductionDynamicsanalysisofcrackedrotorwhenignoringnonlinearwhirlingcouldbefoundinmanyReferences [1 -3 ] .Nonlineardynamicsofcrackedrotorwithwhirlinghavebeenstudiedbasedonformerscholar’swork[4 ]andthewhirlingequationsofacrackedshafthavebeenestablished .Th…  相似文献   

14.
Based on the nonlinear theory, the unbalanced responses of a fixed-tilting-pad gas-lubricated journal bearing-rigid rotor system are investigated. A?time-dependent mathematical model is established to describe the pressure distribution of gas-lubricated journal bearing with nonlinearity. The rigid rotor supported by a fixed-tilting-pad self-acting gas-lubricated journal bearing is modeled. The differential transformation method has been employed to solve the time-dependent gas-lubricated Reynolds equation, and the dynamic motion equation has been solved by the direct integral method. The unbalanced responses of the rotor system supported by fixed-tilting-pad gas-lubricated journal bearings are analyzed by the orbit diagram, Poincaré map, time series, and spectrum diagram. The numerical results reveal periodic, period-3, and quasiperiodic motions of nonlinear behaviors of the system. Finally, the effects of pivot ratio and preload coefficient on the nonlinear dynamic characteristics of the fixed-tilting-pad self-acting gas-lubricated journal bearing-rotor system are investigated.  相似文献   

15.
The dynamics of a modified Jeffcott rotor is studied, including rotor torsional deformation and rotor-stator contact. Conditions are studied under which the rotor undergoes either forward synchronous whirling or self-excited backward whirling motions with continuous stator contact. For forward whirling, the effect on the response is investigated for two commonly used rotor-stator friction models, namely, the simple Coulomb friction and a generalized Coulomb law with cubic dependence on the relative slip velocity. For cases with and without the rotor torsional degree of freedom, analytical estimates and numerical bifurcation analyses are used to map out regions in the space of drive speed and a friction parameter, where rotor-stator contact exists. The nature of the bifurcations in which stability is lost are highlighted. For forward synchronous whirling fold, Hopf, lift-off, and period-doubling bifurcations are encountered. Additionally, for backward whirling, regions of transitions from pure sticking to stick-slip oscillations are numerically delineated.  相似文献   

16.
Taking into account surface coatings painted on disc and casing, a nonlinear rotor system is established for simulating unbalance-rubbing coupled fault. During the modeling process of shaft, the nonlinear geometric relation between displacement and strain is considered. According to the Hamilton's principle, the restoring force between disc and shaft is described by the equivalent spring and the equivalent damper, and then the equivalent dynamic model is further set up. For contact analysis, the novel contact force model is employed to describe the impact force between disc and casing. Meanwhile, the Coulomb model is used to simulate the frictional force. The motion equations of the equivalent dynamic model are solved numerically and the corresponding dynamic behaviors are analyzed by bifurcation diagram, whirl orbit and Poincaré map. The relationship between equivalent linear/nonlinear stiffness and structural parameters is analyzed in detail. Moreover, the effects of eccentricity of disc, surface coatings and radius of shaft on the dynamic characteristic of the equivalent model are discussed.  相似文献   

17.
Bifurcation analysis for a modified Jeffcott rotor with bearing clearances   总被引:15,自引:0,他引:15  
A HB (Harmonic Balance)/AFT (Alternating Frequency/Time) technique is developed to obtain synchronous and subsynchronous whirling motions of a horizontal Jeffcott rotor with bearing clearances. The method utilizes an explicit Jacobian form for the iterative process which guarantees convergence at all parameter values. The method is shown to constitute a robust and accurate numerical scheme for the analysis of two dimensional nonlinear rotor problems. The stability analysis of the steady-state motions is obtained using perturbed equations about the periodic motions. The Floquet multipliers of the associated Monodromy matrix are determined using a new discrete HB/AFT method. Flip bifurcation boundaries were obtained which facilitated detection of possible rotor chaotic (irregular) motion as parameters of the system are changed. Quasi-periodic motion is also shown to occur as a result of a secondary Hopf bifurcation due to increase of the destabilizing cross-coupling stiffness coefficients in the rotor model.  相似文献   

18.
19.
Cracks appearing in the shaft of a rotary system are one of the main causes of accidents for large rotary machine systems. This research focuses on investigating the bifurcation and chaotic behavior of a rotating system with considerations of various crack depth and rotating speed of the system’s shaft. An equivalent linear-spring model is utilized to describe the cracks on the shaft. The breathing of the cracks due to the rotation of the shaft is represented with a series truncated time-varying cosine series. The geometric nonlinearity of the shaft, the masses of the shaft and a disc mounted on the shaft, and the viscoelasticity of the supports are taken into account in modeling the nonlinear dynamic rotor system. Numerical simulations are performed to study the bifurcation and chaos of the system. Effects of the shaft’s rotational speed, various crack depths and viscosity coefficients on the nonlinear dynamic properties of the system are investigated in detail. The system shows the existence of rich bifurcation and chaos characteristics with various system parameters. The results of this research may provide guidance for rotary machine design, machining on rotary machines, and monitoring or diagnosing of rotor system cracks.  相似文献   

20.
In this paper, the effects of structural nonlinearity due to free-play in both leading-edge and trailing-edge outboard control surfaces on the linear flutter control system are analyzed for an aeroelastic model of three-dimensional multiple-actuated-wing. The free-play nonlinearities in the control surfaces are modeled theoretically by using the fictitious mass approach. The nonlinear aeroelastic equations of the presented model can be divided into nine sub-linear modal-based aeroelastic equations according to the different combinations of deflections of the leading-edge and trailing-edge outboard control surfaces. The nonlinear aeroelastic responses can be computed based on these sub-linear aeroelastic systems. To demonstrate the effects of nonlinearity on the linear flutter control system, a single-input and single-output controller and a multi-input and multi-output controller are designed based on the unconstrained optimization techniques. The numerical results indicate that the free-play nonlinearity can lead to either limit cycle oscillations or divergent motions when the linear control system is implemented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号