首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of new mono and binuclear copper (II) complexes [Cul]X(2)and [Cu(2)lX(2)] where 1 = L(1), L(2) and L(3) are the macrocyclic ligands. In mononuclear complexes the geometry of Cu(II) ion is distorted squareplanar and in binuclear complexes the geometry of Cu(II) is tetragonal. The synthesized complexes were characterized by spectroscopic (IR,UV-vis and ESR) techniques. Electrochemical studies of the complexes reveals that all the mononuclear Cu(II) complexes show a single quasireversible one-electron transfer reduction wave (E(pc) = -0.76 to -0.84V) and the binuclear complexes show two quasireversible one electron transfer reduction waves (E(pc)(1) = -0.86 to -1.01V, E(pc)(2) = -1.11 to -1.43V) in cathodic region. The ESR spectra of mononuclear complexes show four lines with nuclear hyperfine splittings with the observed g(11) values in the ranges 2.20-2.28, g( perpendicular) = 2.01-2.06 and A(11) = 125-273. The binuclear complexes show a broad ESR spectra with g = 2.10-2.11. The room temperature magnetic moment values for the mononuclear complexes are in the range [mu(eff) = 1.70-1.72BM] and for the binuclear complexes the range is [mu(eff) = 1.46-1.59BM].  相似文献   

2.
A new binuclear copper complex [CuLCl2]2, [L = 1-(p-tolylsulfonyl)-1,4,7- triazacyclononane], has been synthesized and structured as well as magnetically characterized. In the complex, each copper(II) atom is located in the center of a distorted square pyramidal configuration of five coordinating atoms (two nitrogen atom and three chlorine atom). Two copper(II) atoms were bridged by two chlorine anions (Cl1 and Cl1a). The distance between two copper(II) atoms is 3.483 Å. An antiferromagnetic exchange coupling effect exists in the complex.  相似文献   

3.
The binuclear metal complex [Cu(μ-exoO2)cyclamCu(bpy)](ClO4)2·H2O (bpy?=?2,2′-bipyridine and (exoO2)cyclam?=?1,4,8,11-tetraazacyclotradecanne-2,3-dione) has been synthesized and characterized by single-crystal X-ray analysis and spectroscopic and magnetic measurements. The structure consists of homobinuclear [Cu(μ-exoO2)cyclamCu(bpy)]2+ cations, a weakly coordinated water molecule and perchlorate ions. In each binuclear unit, Cu1, coordinated by four nitrogen atoms of the macrocyclic organic ligand is connected to Cu2 via the exo-cis oxygen atoms of the macrocyclic ligand with Cu···Cu separations of 5.151?Å; Cu2 assumes square-pyramidal geometry. Magnetic properties measured at 2–300?K show antiferromagnetic exchange between adjacent copper(II) ions.  相似文献   

4.
[(CuimZnL-2H)(CuimZnL-H)](ClO4)3, the first imidazolate-bridged Cu(II)-Zn(II) complex of a unique single macrocyclic ligand with two flexible hydroxyethyl pendants, L (L = 3,6,9,16,19,22-hexaaza-6,19-bis(2-hydroxyethyl)tricyclo[22.2.2.2(11,14)]triaconta-1,11,13,24,27,29-hexaene) has been obtained, in which the macrocyclic ligand with two hydroxyethyl arms possesses a markedly different conformation compared to its dicopper analogue.  相似文献   

5.
We report here the first pentanuclear Ba(II) complex of a new tri-aza, tri-oxa macrocycle with two carboxymethyl "arms" pending from two N atoms, H2L2. The crystal structure corresponds to the formula [Ba5(H0.375L2)4(ClO4)(CH3CH2OH)(H2O)2](ClO4)2.5 x 9.5H2O and reveals the presence of four molecules of the ligand surrounding five Ba(II) ions, giving rise to an unusual structure with the metal ions inside a spherical organic cavity.  相似文献   

6.
A new series of binuclear copper(II) complexes were synthesised and studied by magnetic, spectral, ESR and cyclic voltammetry methods. The μeff values per copper atom correspond to the values observed for mononuclear copper(II) complexes. ESR spectral data in solution indicate weak interactions resulting from the electron delocalisation through the ligand system. Two nearly reversible red-ox couples are identified at +?0.50 V and +?0.75 V vs SCE. They correspond to Cu(II)αCu(III) red-ox processes, successively occurring at the two copper sites in the binuclear complexes.  相似文献   

7.
The ligand substitution reactions of the N-donor ligand in the binuclear dimethylplatinum(II) complex of formula cis,cis-[Me2Pt(μ-NN)(μ-dppm)PtMe2], 1, in which dppm = bis(diphenylphosphino)methane and NN = phthalazine, by different nucleophilic phosphorous-donors L, L = P(O-iPr)3 or PPh3 and L2 = dppm, to form the dinuclear complexes 2, cis,cis-[Me2LPt(μ-dppm)PtLMe2] and cis,cis-[Me2Pt(μ-dppm)2PtMe2], respectively, are studied. Complex 1 has a MLCT band in the visible region which was used to easily follow the kinetics of its ligand substitution reactions. These reactions which involve diplatinum(II) complex 1 containing cis Pt-C bonds, proceeded by the normal associative mechanism. In associative reactions of the present work, as expected, the rate of the reactions was depended on the concentration and the nature of the entering group. The nucleophilicity of PPh3 is stronger than P(O-iPr)3 on the basis of its stronger σ-donor ability and its lower solvation and is responsible for the observed 3-fold increase of its rate as compared to that of P(O-iPr)3. Also, the solvation energy involved is suggested to be responsible for the observation of higher rates in benzene than in acetone. The ΔHS compensation plot gives a straight line which suggests the operation of the same mechanism for all entering nucleophiles.  相似文献   

8.
We investigated the complex formation between various underivatized carbohydrates and the binuclear copper(II) complex 1, Cu(2)(bpdpo). A combined approach of UV/vis and CD spectroscopic investigations shows a large discrimination ability of 1 for structurally closely related monosaccharides in alkaline solution. The dominating form of the binuclear copper(II) complex consists of a [Cu(2)L(-)(H)(OH)(2)](+) species between pH 11 and 13, as determined from pH-dependent spectrophotometric titration experiments. The binding strengths of the 1:1 sugar-1 complexes, derived from the biologically important monosaccharides d-mannose (3) and d-glucose (5), is about 1.5 orders of magnitude different at pH 12.40. Moreover, a blue- or a red-shift of the absorption maximum of 1 accompanies the sugar binding and highlights the ability of 1 to discriminate carbohydrates. This phenomenon is due to the number of hydroxyl groups of the particular monosaccharide involved in chelation to the binuclear metal complex.  相似文献   

9.
Hydrothermal synthetic method has been used to prepare complex [ZnL]n (1) (H2L = 4-[(1H-imidazol-4-yl)methylamino]benzoic acid) as spherical microparticles. Slow morphological changes from small spindle-shaped particles to smoother spherical particles in the growth process of complex 1 were observed. Subsequently complex 1 was used as precursor as well as sacrificial template to synthesize hexagonal ZnO nanomaterials by calcination in air. The structure of the final products and the formation process were characterized by measurements of X-ray powder diffraction (XRPD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The formation mechanism of the final nanorods was proposed on the basis of the structural change of complex 1 in the calcination process. The photocatalytic properties of complex 1 and prepared ZnO have also been studied, and the results showed that all these nano-/micromaterials have photocatalytic properties and ZnO formed under lower calcinated temperature has higher photocatalytic activity.  相似文献   

10.
The research on the stimuli-responsive property of biological or synthetic macromolecules in a wide range of scientific fields is a crucial subject for the achievements of the targeted drug release and the precise control of the functions of the supramolecules at a molecular level. We used an anthraquinone-functioned cyclodextrin (1) bridged by an aza-arm to solubilise paclitaxel (PTX) by forming a supramolecular complex (1/PTX). The possible inclusion mode was given based on the experimental results of ultraviolet–visible spectroscopy, Fourier transform infrared, X-ray diffraction, fluorescence spectra, nuclear magnetic resonance, transmission electron microscope, scanning electron microscope and dynamic light scattering characterisations. The controlled release of PTX can be achieved by adding Cu2+ to the solution. This study provides useful references in developing stimuli-responsive drug-carrying and drug-releasing materials.  相似文献   

11.
12.
The static magnetic susceptibility of mononuclear trimethylacetate nickel complex Ni(NH2Ph)4(OOCCMe3)2 (3) and binuclear complexes Ni2(μ-OH2)(μ-OOCCMe3)2(OOCCMe3)2(dipy)2 (4) and Ni2(μ-OOCCMe3)4py2 (5) was measured in the temperature range of 2–300 K. The magnetic behavior of3 is typical of mononuclear complexes with the Ni11 atom in the octahedral environment. Numerical calculations of the temperature dependence of magnetic susceptibility with inclusion of isotropic exchange interactions (J) and single-ion initial splitting parameters showed that the magnetic behavior of complexes4 and 5 can be interpreted in terms of ferromagnetic (for4) and antiferromagnetic (for5) interactions. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 437–442, March, 2000.  相似文献   

13.
Gao EQ  Tang JK  Liao DZ  Jiang ZH  Yan SP  Wang GL 《Inorganic chemistry》2001,40(13):3134-3140
Four oxamato-bridged heterotrinuclear Ni(II)Cu(II)Ni(II) complexes of formula ([Ni(bispictn)](2)Cu(pba))(ClO(4))(2).2.5H(2)O (1), ([Ni(bispictn)](2)Cu(pbaOH))(ClO(4))(2).H(2)O (2), ([Ni(cth)](2)Cu(pba))(ClO(4))(2) (3), and ([Ni(cth)](2)Cu(opba))(ClO(4))(2).H(2)O (4) and a binuclear Ni(II)Cu(II) complex of formula [Cu(opba)Ni(cth)].CH(3)OH (5) have been synthesized and characterized by means of elemental analysis, IR, ESR, and electronic spectra, where pba = 1,3-propylenebis(oxamato), pbaOH = 2-hydroxyl-1,3-propylenebis(oxamato), opba = o-phenylenebis(oxamato), bispictn = N,N'-bis(2-pyridylmethyl)-1,3-propanediamine, and cth = rac-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane. The crystal structures of 1, 3, and 5 have been determined. The structures of complexes 1 and 3 consist of trinuclear cations and perchlorate anions, and that of 5 consists of neutral binuclear molecules which are connected by hydrogen bonds and pi-pi interactions to produce a unique supramolecular "double" sheet. In the three complexes, the copper atom in a square-planar or axially elongated octahedral environment and the nickel atom in a distorted octahedral environment are bridged by the oxamato groups, with Cu.Ni separations between 5.29 and 5.33 A. The magnetic properties of all five complexes have been investigated. The chi(M)T versus T plots for 1-4 exhibit the minimum characteristic of antiferromagnetically coupled NiCuNi species with an irregular spin state structure and a spin-quartet ground state. The chi(M)T versus T plot for 5 is typical of an antiferromagnetically coupled NiCu pair with a spin-doublet ground state. The Ni(II)-Cu(II) isotropic interaction parameters for the five complexes were evaluated and are between 102 and 108 cm(-)(1) (H = -JS(Cu).S(Ni)).  相似文献   

14.
A polymeric self-assembled complex [[Pb(pydc)(pydc-H2)(H2O)2]2]n is prepared from the complexation of a novel pyridine containing self-assembling system, LH2, [pyda-H2]2+[pydc]2- (pyda = 2,6-pyridindiamine and pydc-H2 = 2,6-pyridinedicarboxilic acid) and lead(II) nitrate in 84% yield. The characterization was performed using X-ray crystallography. The crystal system is triclinic with space group P1 and two molecules per unit cell. The unit cell dimensions are a = 6.913(2) A, b = 10.687(4) A and c = 11.182(4) A with alpha = 92.805(6) degrees, beta = 101.821(6) degrees and gamma = 95.688(6) degrees. The final R value is 0.0373 for 4633 reflections measured. This compound is a nine-coordinate binuclear complex with two metal fragments linked via the central four-membered Pb2O2 ring. The crystal also contains a neutral [pydc-H2] molecule, that form hydrogen and coordination bonds that dominate the crystal packing, by forming layers of molecules.  相似文献   

15.
A binuclear copper(II) complex [Cu2 (μ-pyo)2Br4] n (where pyo = pyridine N-oxide) has been synthesized and its structure determined by X-ray crystallography. This complex crystallizes in monoclinic, space group P21/c, with unit cell dimensions a = 11.020(3) Å, b = 10.049(3) Å, c = 7.905(2) Å, β = 110.609(3)°, and Z = 2. The structure was refined to final R = 0.0311 and wR = 0.0721 for 1302 observed reflections (I > 2σ(I)). In the complex, two Cu(II) ions are bridged by two pyo ligands and four bromides coordinate the Cu(II); the distance between the bridged Cu(II) ions is 3.261 Å. The variable-temperature (4–300 K) magnetic susceptibility data show that the magnetic moment is zero. Thus, there exists very strong anti-ferromagnetic coupling between the bridged binuclear Cu(II) ions. Density functional calculations yield a singlet-triplet splitting 2J = ?1355 cm?1.  相似文献   

16.
17.
The dinucleating macrocyclic ligands (L(2;2))(2-) and (L(2;3))(2-), comprised of two 2-[(N-methylamino)methyl]-6-(iminomethyl)-4-bromophenolate entities combined by the -(CH(2))(2)- chain between the two aminic nitrogen atoms and by the -(CH(2))(2)- or -(CH(2))(3)- chain between the two iminic nitrogen atoms, have afforded the following M(II)Cu(II) complexes: [CoCu(L(2;2))](ClO(4))(2).MeCN (1A), [NiCu(L(2;2))](ClO(4))(2) (2A), [ZnCu(L(2;2))](ClO(4))(2).0.5MeCN.EtOH (3A), [CoCu(L(2;3))(MeCN)(2-PrOH)](ClO(4))(2) (4A), [NiCu(L(2;3))](ClO(4))(2) (5A), and [ZnCu(L(2;3))](ClO(4))(2).1.5DMF (6A). [CoCu(L(2;2))(MeCN)(3)](ClO(4))(2) (1A') crystallizes in the monoclinic space group P2(1)/n, a = 11.691(2) A, b = 18.572(3) A, c = 17.058(3) A, beta= 91.18(2) degrees, V = 3703(1) A(3), and Z = 4. [NiCu(L(2;2))(DMF)(2)](ClO(4))(2) (2A') crystallizes in the triclinic space group P(-)1, a = 11.260(2) A, b = 16.359(6) A, c = 10.853(4) A, alpha= 96.98(3) degrees, beta= 91.18(2) degrees, gamma= 75.20(2) degrees, V = 1917(1) A(3), and Z = 2. 4A crystallizes in the monoclinic space group P2(1)/c, a = 15.064(8) A, b = 11.434(5) A, c = 21.352(5) A, beta= 95.83(2)degrees, V = 3659(2) A(3), and Z = 4. The X-ray crystallographic results demonstrate the M(II) to reside in the N(amine)(2)O(2) site and the Cu(II) in the N(imine)(2)O(2) site. The complexes 1-6 are regarded to be isomeric with [CuCo(L(2;2)))](ClO(4))(2).DMF (1B), [CuNi(L(2;2)))](ClO(4))(2).DMF.MeOH (2B), [CuZn(L(2;2)))](ClO(4))(2).H(2)O (3B)), [CuCo(L(2;3)))](ClO(4))(2).2H(2)O (4B), [CuNi(L(2;3)))](ClO(4))(2) (5B), and [CuZn(L(2;3)))](ClO(4))(2).H(2)O (6B) reported previously, when we ignore exogenous donating and solvating molecules. The isomeric M(II)Cu(II) and Cu(II)M(II) complexes are differentiated by X-ray structural, magnetic, visible spectroscopic, and electrochemical studies. The two isomeric forms are significantly stabilized by the "macrocyclic effect" of the ligands, but 1A is converted into 1B on an electrode, and 2A is converted into 2B at elevated temperature.  相似文献   

18.
A crystal structure showing an unusual trinuclear Cd(II) cluster bridged in mu3 fashion by a carbonate ligand is reported. The carbonate ion is formed by fixation of atmospheric carbon dioxide from the corresponding cadmium mononuclear complex containing an aza crown ether.  相似文献   

19.
A binuclear copper(II) complex, [Cu2(μ 1,3-N3)(N3)(pmp)2(ClO4)]ClO4 (pmp = 2-((pyridin-2-yl) methoxy)-1,10-phenanthroline), was synthesized with a single azide as end-to-end bridge ligand, and pmp and perchlorate as ligands. In the crystal, Cu(II) is in a distorted square pyramidal geometry, and a single azide bridges equatorial-axial linking two Cu(II) ions with separation of 5.851 Å. There are π?π stacking interactions involving 1,10-phenanthroline rings. The variable-temperature (2–300 K) magnetic susceptibilities were analyzed using a binuclear Cu(II) magnetic formula and it indicates that there is a very weak ferromagnetic coupling with 2J = 2.82 cm?1.  相似文献   

20.
A novel Cu(II) complex [Cu2L2(NO3)2] with 2-hydroxy-1-naphthaldehyde-(4’hydroxy)phenylacetyl hydrazone (C19H14N2O2·H2O, HL) was synthesized. The structure of [Cu2L2(NO3)2] was characterized by X-ray single-crystal diffraction and can be described as a distorted rectangular pyramid with binuclear coordination. IR, UV–vis and EPR spectra are used to discuss the structure of Cu(II) complex in different conditions. Magnetic properties were determined by EPR spectra and magnetic susceptibility studies, showing magnetic exchange interaction and weak antiferromagnetic exchange between two Cu(II) ions. The apparent activation energy (Ea) of thermal decomposition of compounds indicated that the thermal stability of [Cu2L2(NO3)2] is better than HL. The CT-DNA binding behavior of compounds was determined by UV–vis absorption and viscosity measurements and the results confirmed an intercalative binding mode with CT-DNA. Kb obtained was 6.24(±0.12) × 106 M?1 and 3.09(±0.006) × 106 M?1 for [Cu2L2(NO3)2] and HL, respectively, revealing that the binding ability of [Cu2L2(NO3)2] with CT-DNA was stronger. The thermogenic curves of compounds interacting with CT-DNA were monitored by microcalorimetry, showing they were all endothermic reactions with reaction within 27–42 min; interaction enthalpies (ΔH) of [Cu2L2(NO3)2] and HL were 30.3 and 4.31 kJ mol?1. Binding studies with BSA were evaluated by fluorescence spectroscopy and the same relative interactions were found comparing with the above CT-DNA experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号