共查询到20条相似文献,搜索用时 0 毫秒
1.
We consider the construction of exact eigenstates of the two-dimensional Fermi–Hubbard model defined on an L × L lattice with a periodic condition. Based on the characteristics of Slater determinants, several methods are introduced to construct exact eigenstates of the model. The eigenstates constructed are independent of the on-site electron interaction and some of them can also represent exact eigenstates of the two-dimensional Bose–Hubbard model. 相似文献
2.
Masaaki Nakamura Satoshi Nishimoto 《The European Physical Journal B - Condensed Matter and Complex Systems》2018,91(9):203
We discuss the exact plaquette-ordered ground states of the generalized Hubbard model on the Kagomé lattice for several fillings, by constructing the Hamiltonian as a sum of products of projection operators for up and down spin sectors. The obtained exact ground states are interpreted as Néel ordered states on the bond-located electrons. We determine several parameter regions of the exact ground states, and calculate the entanglement entropy. We examine the above results by numerical calculations based on exact diagonalization and density-matrix renormalization group methods. 相似文献
3.
4.
We study the topological properties of Bogoliubov excitation modes in a Bose–Hubbard model of three-dimensional(3 D) hyperhoneycomb lattices. For the non-interacting case, there exist nodal loop excitations in the Bloch bands. As the on-site repulsive interaction increases, the system is first driven into the superfluid phase and then into the Mott-insulator phase. In both phases, the excitation bands exhibit robust nodal-loop structures and bosonic surface states. From a topology point of view, these nodal-loop excitation modes may be viewed as a permanent fingerprint left in the Bloch bands. 相似文献
5.
Amrita Ghosh Satyaki Kar Sudhakar Yarlagadda 《The European Physical Journal B - Condensed Matter and Complex Systems》2018,91(9):205
We derive an effective Hamiltonian for the two-dimensional Hubbard–Holstein model in the regimes of strong electron–electron and strong electron–phonon interactions by using a nonperturbative approach. In the parameter region where the system manifests the existence of a correlated singlet phase, the effective Hamiltonian transforms to a t1 ? V 1 ? V 2 ? V 3 Hamiltonian for hard-core-bosons on a checkerboard lattice. We employ quantum Monte Carlo simulations, involving stochastic-series-expansion technique, to obtain the ground state phase diagram. At filling 1∕8, as the strength of off-site repulsion increases, the system undergoes a first-order transition from a superfluid to a diagonal striped solid with ordering wavevector \(\vec{Q}\) = (π∕4, 3π∕4) or (π∕4, 5π∕4). Unlike the one-dimensional situation, our results in the two-dimensional case reveal a supersolid phase (corresponding to the diagonal striped solid) around filling 1∕8 and at large off-site repulsions. Furthermore, for small off-site repulsions, we witness a valence bond solid at one-fourth filling and tiny phase-separated regions at slightly higher fillings. 相似文献
6.
《中国物理 B》2021,30(10):107401-107401
Understanding how electrons form pairs in the presence of strong electron correlations demands going beyond the BCS paradigm. We study a correlated superconducting model where the correlation effects are accounted for by a U term local in momentum space. The electron correlation is treated exactly while the electron pairing is treated approximately using the mean-field theory. The self-consistent equation for the pair potential is derived and solved. Somewhat contrary to expectation, a weak attractive U comparable to the pair potential can destroy the superconductivity, whereas for weak to intermediate repulsive U, the pair potential can be enhanced. The fidelity of the mean-field ground state is calculated to describe the strength of the elelectron correlation. We show that the pair potential is not equal to the single-electron superconducting gap for the strongly correlated superconductors, in contrast to the uncorrelated BCS limit. 相似文献
7.
Dennis Hinrichs Axel Pelster Martin Holthaus 《Applied physics. B, Lasers and optics》2013,113(1):57-67
We develop a strategy for calculating critical exponents for the Mott insulator-to-superfluid transition shown by the Bose–Hubbard model. Our approach is based on the field-theoretic concept of the effective potential, which provides a natural extension of the Landau theory of phase transitions to quantum critical phenomena. The coefficients of the Landau expansion of that effective potential are obtained by high-order perturbation theory. We counteract the divergency of the weak-coupling perturbation series by including the seldom considered Landau coefficient a 6 into our analysis. Our preliminary results indicate that the critical exponents for both the condensate density and the superfluid density, as derived from the two-dimensional Bose–Hubbard model, deviate by less than 1 % from the best known estimates computed so far for the three-dimensional XY universality class. 相似文献
8.
Effects of the piezoelectric field on the modulation of exciton–polaritons by surface acoustic waves
E.A. Cerda-Méndez D. Krizhanovskii K. Biermann R. Hey P.V. Santos M.S. Skolnick 《Superlattices and Microstructures》2011
Surface acoustic waves (SAWs) provide a powerful tool for the modulation of polaritons in GaAs-based microcavities. In this contribution, we compare the modulation introduced by SAWs propagating along piezoelectric and non-piezoelectric crystal directions of the sample surface. Strain calculations reveal that the type-I band-gap modulation induced by the strain field is comparable for both SAW types. Piezoelectric SAWs have, however, an intrinsic longitudinal electric field, which can dissociate quantum well (QW) excitons and, thus, degrade the modulation. Images of the polariton far-field photoluminescence reveal this behavior for different excitation conditions. 相似文献
9.
The Holstein–Hubbard model is investigated in one-dimension at half filling employing a series of unitary transformations taking into account the coherence and correlation of phonons. To treat the phonon subsystem more accurately a new squeezing transformation is introduced to incorporate the electron-density-dependent onsite phonon correlations to lower the energy further. The effective electronic Hamiltonian is next obtained by averaging the transformed Hamiltonian with respect to the zero-phonon state and the resulting effective electronic Hamiltonian is solved exactly using the method of Bethe ansatz. Finally the ground state is obtained by minimizing the energy with respect to all the variational parameters. The present method gives better results for the ground state energy of the system and also suggests the existence of a wider intermediate metallic phase at the charge-density-wave–spin-density-wave crossover region, which was first predicted by Takada and Chatterjee and later supported by Krishna and Chatterjee. 相似文献
10.
A universal bipartite model is proposed based on an energy supply–demand network. The analytical expression of SPL distribution of the node weight, the “shifting coefficient” α and the scaling exponent γ are presented without edge weight growth by using the mean-field theory approach. The numerical results of SPL distribution of the node weight, the “shifting coefficient” α and the scaling exponent γ with edge weight growth are also presented. The production’s SPL distribution of the US coal enterprizes from 1991 to 2009 is obtained from the empirical analysis. The numerical results obtained from the model are in good agreement with the empirical results. 相似文献
11.
The effects of σ and Φ mesons on the surface redshift of a neutron star have been investigated within the framework of relativistic mean field theory for the baryon octet {n,p,Λ,Σ,Σ 0,Σ +,Ξ,Ξ 0 } system.It is found that compared with those without considering the contributions of σ and Φ mesons,the surface redshift decreases and that corresponding to the maximum value of the mass also decreases from 0.2540 to 0.2236,about by 12%.Meanwhile,it is also found that including σ and Φ mesons,the M/R and that corresponding to the maximum mass decrease. 相似文献
12.
13.
Using the density matrix renormalization group method, we study a one-dimensional system of bosons that interact with a local three-body term. We calculate the phase diagram for higher densities, where the Mott insulator lobes are surrounded by the superfluid phase. We also show that the Mott insulator lobes always grow as a function of the density. The critical points of the Kosterlitz–Thouless transitions were determined through the von Neumann block entropy, and its dependence on the density is given by a power law with a negative exponent. 相似文献
14.
Fuchs S Gull E Pollet L Burovski E Kozik E Pruschke T Troyer M 《Physical review letters》2011,106(3):030401
We study the thermodynamic properties of the 3D Hubbard model for temperatures down to the Néel temperature by using cluster dynamical mean-field theory. In particular, we calculate the energy, entropy, density, double occupancy, and nearest-neighbor spin correlations as a function of chemical potential, temperature, and repulsion strength. To make contact with cold-gas experiments, we also compute properties of the system subject to an external trap in the local density approximation. We find that an entropy per particle S/N ≈ 0.65(6) at U/t = 8 is sufficient to achieve a Néel state in the center of the trap, substantially higher than the entropy required in a homogeneous system. Precursors to antiferromagnetism can clearly be observed in nearest-neighbor spin correlators. 相似文献
15.
We reduce an exact solution of the 3D Navier–Stokes equation (Muriel, 2011) [1] to two dimensions to model flow on the surface of a globe, producing the following results: (a) an analytic discovery of the time evolution of two streams, one each above and below the equator, (b) analytic speed-up of modeling bypassing iterative numerical simulation. 相似文献
16.
Based on the single-band t–t' Anderson–Hubbard model, the effect of disorder on the parameters and ranges of existence of incommensurate helical spin waves is studied. The problem is solved within the functional integration theory in static approximation, taking into account longitudinal fluctuations of the magnetic moment. Magnetic phase diagrams and parameters of incommensurate helical spin waves are obtained as functions of temperatures and electron and impurity concentrations. It is shown that disorder can lead to the first-order transition from the antiferromagnetic phase to the (Q, π) phase and the metal–dielectric transition from antiferromagnetic metal to antiferromagnetic dielectric far from the half-filled band. The results obtained are used to explain the incommensurate magnetic order observed in cuprates in the overdoped mode. 相似文献
17.
A new theoretical model for nanomagnets represented by the Ashkin–Teller model on a core-shell hexagonal nanotube is proposed. The Mean Field Theory from the Bogoliubov inequality is applied to study the magnetizations, phase boundaries and tricritical points. For a positive couplings system (ferromagnetic), first order and continuous phase transitions between the stable, metastable and unstable states are observed. For a negative core-shell coupling system, only continuous phase transitions between the stable and unstable states are observed. The phase diagram is presented to illustrate the different phases and transitions exhibited by the model. 相似文献
18.
In this study, we have developed a new numerical approach to solve differential-type viscoelastic fluid models for a commonly used benchmark problem, namely, the steady Taylor—Couette flow between eccentric cylinders. The proposed numerical approach is special in that the nonlinear system of discretized algebraic flow equations is solved iteratively using a Newton–Krylov method along with an inverse-based incomplete lower-upper preconditioner. The numerical approach has been validated by solving the benchmark problem for the upper-convected Maxwell model at a large Deborah number. Excellent agreement with the numerical data reported in the literature has been found. In addition, a parameter study was performed for an extended White–Metzner model. A large eccentricity ratio was chosen for the cylinder system in order to allow flow recirculation to occur. We detected several interesting phenomena caused by the large eccentricity ratio of the cylinder system and by the viscoelastic nature of the fluid. Encouraged by the results of this study, we intend to investigate other polymeric fluids having a more complex microstructure in an eccentric annular flow field. 相似文献
19.
20.
The Bose–Hubbard model (BHM) is a standard model which describes the quantum behavior of ultracold bosons in optical lattice. When tuning the model parameters, a quantum phase transition from superfluid (SF) phase to Mott insulating (MI) phase emerges. However, an extra tunneling process – the density-induced tunneling – is usually ignored in the standard BHM. Using process-chain method, we give a thorough study of the phase diagram of the BHM with density-induced tunneling in different particle density regions and spatial dimensions. We find the density-induced tunneling process can affect the SF-MI phase boundary dramatically, by suppressing the MI region and tune the tip of the phase boundary to lower chemical potential. Our unbiased numerical study gives benchmark results of the phase diagram of the BHM with density-induced tunneling. 相似文献