首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
On the basis of the modified strain gradient elasticity theory, the free vibration characteristics of curved microbeams made of functionally graded materials (FGMs) whose material properties vary in the thickness direction are investigated. A size-dependent first-order shear deformation beam model is developed containing three internal material length scale parameters to incorporate small-scale effect. Through Hamilton’s principle, the higher-order governing equations of motion and boundary conditions are derived. Natural frequencies of FGM curved microbeams corresponding to different mode numbers are evaluated for over a wide range of material property gradient index, dimensionless length scale parameter and aspect ratio. Moreover, the results obtained via the present non-classical first-order shear deformation beam model are compared with those of degenerated beam models based on the modified couple stress and the classical theories. It is found that the difference between the natural frequencies predicted by the various beam models is more significant for lower values of dimensionless length scale parameter and higher values of mode number.  相似文献   

2.
多孔功能梯度材料(FGM)构件的特性与孔隙率和孔隙分布形式有密切关系。本文基于经典板理论,考虑不同孔隙分布形式时修正的混合率模型,研究Winkler弹性地基上四边受压多孔FGM矩形板的自由振动与临界屈曲载荷特性。首先利用Hamilton原理和物理中面的定义推导Winkler弹性地基上四边受压多孔FGM矩形板自由振动的控制微分方程并进行无量纲化,然后应用微分变换法(DTM)对无量纲控制微分方程和边界条件进行变换,得到计算无量纲固有频率和临界屈曲载荷的代数特征方程。将问题退化为孔隙率为零时的FGM矩形板并与已有文献进行对比以验证其有效性。最后计算并分析了梯度指数、孔隙率、地基刚度系数、长宽比、四边受压载荷及边界条件对多孔FGM矩形板无量纲固有频率的影响以及各参数对无量纲临界屈曲载荷的影响。  相似文献   

3.
This study examines the effects of the residual stress and viscous and hysteretic dampings on the vibrational behavior and stability of a spinning Timoshenko micro-shaft.A modified couple stress theory(MCST) is used to elucidate the sizedependency of the micro-shaft spinning stability,and the equations of motion are derived by employing Hamilton's principle and a spatial beam for spinning micro-shafts.Moreover,a differential quadrature method(DQM) is presented,along with the exact solution for the forward and backward(FW-BW) complex frequencies and normal modes.The effects of the material length scale parameter(MLSP),the spinning speed,the viscous damping coefficient,the hysteretic damping,and the residual stress on the stability of the spinning micro-shafts are investigated.The results indicate that the MLSP,the internal dampings(viscous and hysteretic),and the residual stress have significant effects on the complex frequency and stability of the spinning micro-shafts.Therefore,it is crucial to take these factors into account while these systems are designed and analyzed.The results show that an increase in the MLSP leads to stiffening of the spinning micro-shaft,increases the FW-BW dimensionless complex frequencies of the system,and enhances the stability of the system.Additionally,a rise in the tensile residual stresses causes an increase in the FW-BW dimensionless complex frequencies and stability of the micro-shafts,while the opposite is true for the compressive residual stresses.The results of this research can be employed for designing spinning structures and controlling their vibrations,thus forestalling resonance.  相似文献   

4.
The elastic buckling analysis and the static postbuckling response of the Euler–Bernoulli microbeams containing an open edge crack are studied based on a modified couple stress theory. The cracked section is modeled by a massless elastic rotational spring. This model contains a material length scale parameter and can capture the size effect. The von Kármán nonlinearity is applied to display the postbuckling behavior. Analytical solutions of a critical buckling load and the postbuckling response are presented for simply supported cracked microbeams. This parametric study indicates the effects of the crack location, crack severity, and length scale parameter on the buckling and postbuckling behaviors of cracked microbeams.  相似文献   

5.
Analytical solutions for bending, buckling, and vibration of micro-sized plates on elastic medium using the modified couple stress theory are presented. The governing equations for bending, buckling and vibration are obtained via Hamilton’s principles in conjunctions with the modified couple stress and Kirchhoff plate theories. The surrounding elastic medium is modeled as the Winkler elastic foundation. Navier’s method is being employed and analytical solutions for the bending, buckling and free vibration problems are obtained. Influences of the elastic medium and the length scale parameter on the bending, buckling, and vibration properties are discussed.  相似文献   

6.
The size-dependent effect on the biaxial and shear nonlinear buckling analysis of an isotropic and orthotropic micro-plate based on the surface stress,the modified couple stress theory(MCST),and the nonlocal elasticity theories using the differential quadrature method(DQM)is presented.Main advantages of the MCST over the classical theory(CT)are the inclusion of the asymmetric couple stress tensor and the consideration of only one material length scale parameter.Based on the nonlinear von K′arm′an assumption,the governing equations of equilibrium for the micro-classical plate considering midplane displacements are derived based on the minimum principle of potential energy.Using the DQM,the biaxial and shear critical buckling loads of the micro-plate for various boundary conditions are obtained.Accuracy of the obtained results is validated by comparing the solutions with those reported in the literature.A parametric study is conducted to show the effects of the aspect ratio,the side-to-thickness ratio,Eringen’s nonlocal parameter,the material length scale parameter,Young’s modulus of the surface layer,the surface residual stress,the polymer matrix coefficients,and various boundary conditions on the dimensionless uniaxial,biaxial,and shear critical buckling loads.The results indicate that the critical buckling loads are strongly sensitive to Eringen’s nonlocal parameter,the material length scale parameter,and the surface residual stress effects,while the effect of Young’s modulus of the surface layer on the critical buckling load is negligible.Also,considering the size dependent effect causes the increase in the stiffness of the orthotropic micro-plate.The results show that the critical biaxial buckling load increases with an increase in G12/E2and vice versa for E1/E2.It is shown that the nonlinear biaxial buckling ratio decreases as the aspect ratio increases and vice versa for the buckling amplitude.Because of the most lightweight micro-composite materials with high strength/weight and stiffness/weight ratios,it is anticipated that the results of the present work are useful in experimental characterization of the mechanical properties of micro-composite plates in the aircraft industry and other engineering applications.  相似文献   

7.
A size-dependent Kirchhoff micro-plate model is developed based on the strain gradient elasticity theory. The model contains three material length scale parameters, which may effectively capture the size effect. The model can also degenerate into the modified couple stress plate model or the classical plate model, if two or all of the material length scale parameters are taken to be zero. The static bending, instability and free vibration problems of a rectangular micro-plate with all edges simple supported are carried out to illustrate the applicability of the present size-dependent model. The results are compared with the reduced models. The present model can predict prominent size-dependent normalized stiffness, buckling load, and natural frequency with the reduction of structural size, especially when the plate thickness is on the same order of the material length scale parameter.  相似文献   

8.
The effect of length scale on buckling behavior of a single-layer graphene sheet embedded in a Pasternak elastic medium is investigated using a nonlocal Mindlin plate theory. An explicit solution is extracted for the buckling loads of graphene sheet and the influence of the nonlocal parameter and aspect ratio on dimensionless buckling loads is presented. It is found that the nonlocal assumptions exhibit larger buckling loads and stiffness of elastic medium in comparison to classical plate theory.  相似文献   

9.
伪Stroh型公式能够将多场耦合材料的控制方程转化为线性特征系统来求解,从而获得多层结构简支边界条件的精确解.本文利用伪Stroh型公式,研究一维六方准晶层合简支梁的自由振动和屈曲问题,通过传递矩阵法,获得准晶层合梁自由振动固有频率与临界屈曲载荷的精确解.通过与已有梁的剪切变形理论结果比较,验证了本文伪Stroh型公式的正确性和有效性.通过数值算例,分析由两种不同准晶材料组成的三明治层合梁的叠层方式、高跨比、层厚比及层数对梁的固有频率、临界屈曲载荷及其模态的影响规律.结果表明,叠层顺序和梁的高跨比、层厚比对准晶层合梁的自由振动固有频率和临界屈曲载荷有很大影响,可通过调整梁的几何尺寸和叠层顺序得到准晶层合梁的最佳固有频率和临界屈曲载荷.本文给出的精确解可为工程上研究准晶梁的各种数值解法和实验方法提供理论参考.  相似文献   

10.
基于Hamilton 原理,运用假设时间模态法,得到了弹性基础上压杆的横向非线性自由振动与屈曲的位移型常微分控制方程. 考虑一端固定另一端可移简支边界条件,采用打靶法得到了结构第一至第三阶结构频率与一阶屈曲载荷的数值结果. 结果表明:随轴心压力增加,结构频率减小;随弹性基础刚度增加,结构频率与屈曲载荷均增加;弹性基础刚度对结构频率的影响随振型阶数增加在减小;在小振幅的情形下,不同振型对一阶屈曲载荷的影响很小.  相似文献   

11.
Abstract

The eigenvalue problems resulting from stiffness matrix formulations of structural vibration and buckling problems are nonlinear if substructures are analyzed exactly, or if classical frequency (vibration problems) or load factor (buckling problems) dependent member equations are used. This makes rapid calculation of accurate free vibration or buckling modes difficult. This paper presents several techniques which might overcome this difficulty, examines them theoretically and experimentally, and gives some of the ways in which the more successful techniques can be incorporated in mode finding methods. Coincident eigenvalues (i.e., natural frequencies or critical load factors) are included.  相似文献   

12.
基于Timoshenko梁理论研究多孔功能梯度材料梁(FGMs)的自由振动问题.首先,考虑多孔功能梯度材料梁的孔隙率模型,建立了两种类型的孔隙分布.其次,基于Timoshenko梁变形理论,给出位移场方程、几何方程和本构方程,利用Hamilton原理推导多孔功能梯度材料梁的自由振动控制微分方程,并进行无量纲化,然后应用微分变换法(DTM)对无量纲控制微分方程及其边界条件进行变换,得到含有固有频率的等价代数特征方程.最后,计算了固定-固定(C-C)、固定-简支(C-S)和简支-简支(S-S)三种不同边界下多孔功能梯度材料梁自由振动的无量纲固有频率.将其退化为均匀材料与已有文献数据结果对照,验证了正确性.讨论了孔隙率、细长比和梯度指数对多孔功能梯度材料梁无量纲固有频率的影响.  相似文献   

13.
In this paper, a size-dependent first-order shear deformable shell model is developed based upon the modified strain gradient theory (MSGT) for the axial buckling analysis of functionally graded (FG) circular cylindrical microshells. It is assumed that the material properties of FG materials, which obey a simple power-law distribution, vary through the thickness direction. The principle of virtual work is utilized to formulate the governing equations and corresponding boundary conditions. Numerical results are presented for the axial buckling of FG circular cylindrical microshells subject to simply-supported end conditions and the effects of material length scale parameter, material property gradient index, length-to-radius ratio and circumferential mode number on the size-dependent critical buckling load are extensively studied. For comparison purpose, the critical buckling loads predicted by modified couple stress theory (MCST) and classical theory (CT) are also presented. Results show that the size effect plays an important role for lower values of dimensionless length scale parameter. Moreover, it is observed that the critical buckling loads obtained based on MSGT are greater than those obtained based on MCST and CT.  相似文献   

14.
In the present study, the dynamic pull-in instability and free vibration of circular microplates subjected to combined hydrostatic and electrostatic forces are investigated. To take size effects into account, the strain gradient elasticity theory is incorporated into the Kirchhoff plate theory to develop a nonclassical plate model including three internal material length scale parameters. By using Hamilton’s principle, the higher-order governing equation and the corresponding boundary conditions are obtained. Afterward, a generalized differential quadrature (GDQ) method is employed to discritize the governing differential equations along with simply supported and clamped edge supports. To evaluate the pull-in voltage and vibration frequencies of actuated microplates, the hydrostatic-electrostatic actuation is assumed to be calculated by neglecting the fringing field effects and utilizing the parallel plate approximation. Also, a comparison between the pull-in voltages predicted by the strain gradient theory and the degenerated ones is presented. It is revealed that increasing the dimensionless internal length scale parameter or decreasing the applied hydrostatic pressures leads to higher values of the pull-in voltage. Moreover, it is found that the value of pull-in hydrostatic pressure decreases corresponding to higher dimensionless internal length scale parameters and applied voltages.  相似文献   

15.
基于修正的应变梯度理论和精化的高阶剪切变形理论,提出了一种含尺度效应的功能梯度三明治微梁模型。功能梯度材料的等效弹性参数由Mori-Tanaka均匀化方法描述。针对微梁的高阶边值问题,融合微分求积和Gauss-Lobatto求积准则,建立了一种2节点18自由度的微分求积有限元。通过对比性研究,验证了理论及数值模型的有效性。最后,讨论了边界条件、材料尺度参数、功能梯度指数、长细比、各层厚度比等对功能梯度三明治微梁静动态特性的影响。结果表明,功能梯度三明治微梁的静力响应、振动频率、屈曲荷载以及模态均呈现出显著的尺度效应,所得结果有望为微机电系统中承载器件的设计提供数据积累和方法依据。  相似文献   

16.
Abstract

An analytical model is proposed to analyze the vibration and buckling problem of partially cracked thin orthotropic microplate in the presence of thermal environment. The differential governing equation for the cracked plate is derived using the classical plate theory in conjunction with the strain gradient theory of elasticity. The crack is modeled using appropriate crack compliance coefficients based on the simplified line spring model. The influence of thermal environment is incorporated in governing equation in form thermal moments and in-plane compressive forces. The governing equation for cracked plate has been solved analytically to get fundamental frequency and central deflection of plate. To demonstrate the accuracy of the present model, few comparison studies are carried out with the published literature. The stability and dynamic characteristics of the cracked plate are studied considering various parameters such as crack length, plate thickness, change in temperature, and internal length scale of microstructure. It has been concluded that the frequency and deflection are affected by crack length, temperature, and internal length scale of microstructure. Furthermore, to study the buckling behavior of cracked plate, the classical relations for critical buckling load and critical buckling temperature is also proposed considering the effect of crack length, temperature, and internal length scale of microstructure.  相似文献   

17.
压电薄板屈曲有限元分析及DKQ单元   总被引:5,自引:0,他引:5  
赵国忠  顾元宪 《力学学报》2001,33(4):568-576
在机电耦合本构方程基础上,利用Hamilton原理推导了压电薄板屈曲分析的有限元特征方程和机电耦合的内力计算公式,在有限元实现中选择了基于Kirchhoff薄板假定的四边形薄板单元(DKQ单元),并给出该单元的几何刚度阵及其数值积分方法。在大型通用有限元分析和优化设计软件系统JIFEX中实现了该方法。给出的数值验证了DKQ单元在屈曲分析和压电薄板静力分析中具有较高精度和收敛性,通过机械荷载和电荷载联合作用下的临界荷载计算,表明压电耦合效应能够影响结构的稳定性,可以通过改变外加电压对结构稳定性进行控制。  相似文献   

18.
A microscale nonlinear Bernoulli–Euler beam model on the basis of strain gradient elasticity with surface energy is presented. The von Karman strain tensor is used to capture the effect of geometric nonlinearity. Governing equations of motion and boundary conditions are obtained using Hamilton’s principle. In particular, the developed beam model is applicable for the nonlinear vibration analysis of microbeams. By employing a global Galerkin procedure, the ordinary differential equation corresponding to the first mode of nonlinear vibration for a simply supported microbeam is obtained. Numerical investigations show that in a microbeam having a thickness comparable with its material length scale parameter, the strain gradient effect on increasing the beam natural frequency is higher than that of the geometric nonlinearity. By increasing the beam thickness, the strain gradient effect decreases or even diminishes. In this case, geometric nonlinearity plays the main role on increasing the natural frequency of vibration. In addition, it is shown that for beams with some specific thickness-to-length parameter ratios, both geometric nonlinearity and size effect have significant role on increasing the frequency of nonlinear vibration.  相似文献   

19.
为研究梯度多孔金属材料梁的屈曲以及屈曲附近的振动特性,首先建立了随从分布压力下梯度多孔材料梁的动力学控制方程,得到了描述后屈曲的静态控制微分方程和描述屈曲前后振动响应的控制方程。通过打靶法数值求解两组强非线性方程,获得了简支-固支梯度多孔梁的屈曲临界载荷以及屈曲前后振动频率与载荷之间的关系曲线。分析了孔隙率系数和孔隙分布方式对屈曲临界载荷和屈曲前后振动频率的影响。结果表明,随着孔隙率系数e0的增加,发生屈曲时的临界载荷减小;各阶固有频率也减小。屈曲前,各阶振动频率随载荷增大而减小,屈曲后,除三阶频率外,一阶和二阶频率随载荷增大而增大。  相似文献   

20.
In this paper, the free vibration and buckling of laminated homogeneous and non-homogeneous orthotropic truncated conical shells under lateral and hydrostatic pressures are studied. At first, the basic relations, the modified Donnell type dynamic stability and compatibility equations have been obtained for laminated orthotropic truncated conical shells, the Young's moduli and density of which vary piecewise continuously in the thickness direction. Applying superposition and Galerkin methods to the foregoing equations, the buckling pressures and dimensionless frequency parameter of laminated homogeneous and non-homogeneous orthotropic conical shells are obtained. The appropriate formulas for single-layer and laminated cylindrical shells made of homogeneous and non-homogeneous, orthotropic and isotropic materials are found as a special case. Finally, the effects of the number and ordering of layers, the variations of conical shell characteristics, together and separately variations of the Young's moduli and densities of the materials of layers on the critical lateral and hydrostatic pressures, and frequency parameter are found for different mode numbers. The results are compared with other works.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号