首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary: Electrically conducting polypyrrole‐poly(ethylene oxide) (PPy‐PEO) composite nanofibers are fabricated via a two‐step process. First, FeCl3‐containing PEO nanofibers are produced by electrospinning. Second, the PEO‐FeCl3 electrospun fibers are exposed to pyrrole vapor for the synthesis of polypyrrole. The vapor phase polymerization occurs through the diffusion of pyrrole monomer into the nanofibers. The collected non‐woven fiber mat is composed of 96 ± 30 nm diameter PPy‐PEO nanofibers. FT‐IR, XPS, and conductivity measurements confirm polypyrrole synthesis in the nanofiber.

An SEM image of the PPy‐PEO composite nanofibers. The scale bar in the image is 500 nm.  相似文献   


2.
聚乙二醇-b-聚乳酸的合成及其电纺形成超细纤维研究   总被引:2,自引:2,他引:0  
为了提高聚乳酸的亲水性,以辛酸亚锡为催化剂、聚乙二醇单甲醚(mPEG)为大分子引发剂进行丙交酯(LLA)开环聚合,合成聚乙二醇-b-聚乳酸两嵌段共聚物(PELA).以红外光谱1、H核磁共振谱、接触角测试、差热扫描量热分析等方法对PELA的结构及性能进行表征.结果表明,通过调控mPEG与LLA的投料比可以控制PELA的相对分子质量,而随着mPEG组分含量或链长增加,共聚物亲水性增强,但其Tg、Tcc、Tm有所降低.由普通电纺制备PELA超细纤维,并分别由乳液电纺和同轴电纺得到以水溶性聚氧化乙烯(PEO)为芯、PELA为壳的芯/壳结构复合超细纤维(E-PEO/PELA和C-PEO/PELA).扫描电镜和透射电镜结果表明,PELA、E-PEO/PELA和C-PEO/PELA超细纤维形貌良好.随着PELA中mPEG含量的增加,电纺PELA纤维膜的吸水率增强,而由乳液电纺和同轴电纺制备的PEO/PELA芯/壳结构超细纤维膜,亲水性均好于PELA超细纤维膜.  相似文献   

3.
We have successfully fabricated poly(ethylene oxide) (PEO) nanofibers containing embedded multi‐wall carbon nanotubes (MWCNTs). An initial dispersion of the MWCNTs in distilled water was achieved using sodium dodecyl sulfate. Subsequently, the dispersion was decanted into a PEO solution, which enabled separation of the MWCNTs and their individual incorporation into the PEO nanofibers on subsequent electrospinning. Initially, the carbon nanotube (CNT) rods were randomly oriented, but owing to the sink‐like flow in the electrospinning wedge, they became gradually oriented along the streaming direction, in order that oriented CNTs were obtained on entering the electrospun jet. Individual MWCNTs became embedded in the nanofibers, and were mostly aligned along the fiber axis. Evidence of load transfer to the nanotubes in the composite nanofiber was observed from the field‐emission scanning electron microscopy, transmission electron microscopy and conductivity data.  相似文献   

4.
Triblock copolymers made up of poly(ethylene oxide) (PEO) and polylactide (PLA) were synthesized and converted to fibers by the electrospinning process. A two‐step in situ‐synthesis in bulk was applied to extend PLA‐PEO‐PLA triblock copolymers with relatively short block length and low molecular weight in order to obtain electrospinnable materials. DL‐lactide was polymerized to the hydroxyl chain ends of PEO via the stannous octoate route. Hexamethylene diisocyanate (HDI) was added as chain extender in the second step, leading to poly(ether‐ester‐urethane) multiblock copolymers. The materials were electrospun from solutions in chloroform. Different concentrations and voltages were analyzed. The ether and ester blocks were varied in their block length and their effects on the fiber morphology was studied. Variations in the electrical conductivity of the chloroform solutions were investigated by adding triethyl benzyl ammonium chloride (TEBAC) in different amounts. Finally, with high quality electrospun PLA‐PEO‐PEO triblock copolymer fibers mechanical cutting was possible. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
In this work, aligned and molecularly oriented bone‐like PLLA semihollow fiber yarns were manufactured continuously from an optimized homogeneous polymer‐solvent‐nonsolvent system [PLLA, CH2Cl2, and dimethyl formamide (DMF)] by a single capillary electrospinning via self‐bundling technique. Here, it should be emphasized that the self‐bundling electrospinning technique, a very facile electrospinning technique with a grounded needle (which is to induce the self‐bundling of polymer nanofibers at the beginning of electrospinning process), is used for the alignment and molecular orientation of the polymer fiber, and the take‐up speed of the rotating drum for the electrospun fiber yarn collection is very low (0.5 m/s). PLLA can be dissolved in DMF and CH2Cl2 mixed solvent with different ratios. By varying the ratios of mixed solvent system, PLLA electrospun semihollow fiber with the porous inner structure and compact shell wall could be formed, the thickness of the shell and the size of inner pores could be adjusted. The results of polarized FTIR and wide angle X‐ray diffraction investigations verified that as‐prepared PLLA semihollow fiber yarns were well‐aligned and molecularly oriented. Both the formation mechanism of semihollow fibers with core‐shell structure and the orientation mechanism of polymer chains within the polymer fibers were all discussed. The as‐prepared self‐bundling electrospun PLLA fiber yarns possessed enhanced mechanical performance compared with the corresponding conventional electrospun PLLA fibrous nonwoven membranes. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1118–1125, 2010  相似文献   

6.
Poly(ethylene oxide) (PEO) is known for facilitating the electrospinning of biopolymer solutions, which are otherwise not electrospinnable. The objective of this study was to improve the understanding of the positive effects of PEO on the electrospinning of whey protein isolate (WPI) solutions under different pH conditions. Alterations in protein secondary structure and polymer solution properties (viscosity, conductivity, and dynamic surface tension), as induced by pH changes, significantly affected the electrospinning behavior of WPI/PEO (10% w/w: 0.4% w/w PEO) solutions. Acidic solutions resulted in smooth fibers (707 ± 105 nm) while neutral solutions produced spheres (2.0 ± 1.0 μm) linked with ultrafine fibers (138 ± 32 nm). In comparison, alkaline solutions produced fibers (191 ± 36 nm) that were embedded with spindle‐like beads (1.0 ± 0.5 μm). 13C NMR and FTIR spectroscopies showed that the increase in random coil and α‐helix secondary structures in WPI were the main contributors to the formation of bead‐less electrospun fibers. The electrospinning‐enabling properties of PEO on aqueous WPI solutions were attributed to physical chain entanglement between the two polymers, rather than specific polymer–polymer interactions. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

7.
Summary: Mimetics of eggshell membrane protein fibers have been obtained with an electrospinning technique based on soluble eggshell membrane protein (SEP) prepared previously. Poly(ethylene oxide), a biocompatible and water soluble polymer, is used to improve the processability of SEP. Blends of SEP/PEO aqueous solutions were electrospun. The diameters of the fibers are 0.3–20 μm depending on the concentration of the solution and the proportion of SEP/PEO. Two “cross‐linking” methods are investigated in order to improve the anti‐water property of the fibers.

Scanning electron micrograph of electrospun fibers.  相似文献   


8.
Centrifugal force spinning (CFS), also known as centrifugal spinning, forcespinning, or rotary jet spinning, provides considerably higher production rates than electrospinning (ES), but the more widespread use of CFS as an alternative depends on the ability to produce fibers with robust thermal and mechanical properties. Here, we report the CFS of poly(ethylene oxide) (PEO) fibers made using a spinning dope formulated with acetonitrile (AcN) as the volatile solvent, and we describe the thermal and mechanical properties of the centrifugally-spun fibers. Even though the formation, diameter, and morphology of electrospun and centrifugally-spun PEO fibers are relatively well-studied, the article presents three crucial contributions: the pioneering use of PEO solutions in AcN as spinning dope, characterization of crystallinity and mechanical properties of the centrifugally-spun PEO fibers, and a comparison with the corresponding properties of electrospun fibers. We find that fiber formation occurrs for the chosen CFS conditions if polymer concentration exceeds the entanglement concentration, determined from the measured specific viscosity. Most significantly, the centrifugally spun PEO fibers display crystallinity, modulus, elongation-at-break, and fiber diameter that rival the properties of electrospun PEO fibers reported in the literature.  相似文献   

9.
Electrically conductive polyaniline (PANi)/poly(methyl methacrylate) (PMMA) coaxial fibers were prepared through the chemical deposition of PANi onto preformed PMMA fibers via in situ polymerization. PMMA fibers were prepared as core materials via electrospinning. Spectral studies and scanning electron microscopy observations indicated the formation of PANi/PMMA coaxial fibers with a diameter of approximately 290 nm and a PANi layer thickness of approximately 30 nm. The conductivity of the PANi/PMMA coaxial fibers was significantly higher than that of electrospun fibers of PANi/poly(ethylene oxide) blends and blend cast films of the same PANi composition. To reproducibly generate uniform‐core polymer fibers, the organic solution properties that affected the morphology and diameter of the electrospun fibers were investigated. The polymer molecular weight, solution concentration, solvent dielectric constant, and addition of soluble organic salts were strongly correlated to the morphology of the electrospun fiber mat. In particular, the dielectric constants of the solvents substantially influenced both the fiber diameter and bead formation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3934–3942, 2004  相似文献   

10.
The electrospinning technique was used to spin ultra-thin fibers from several polymer/solvent systems. The diameter of the electrospun fibers ranged from 16 nm to 2 μm. The morphology of these fibers was investigated with an atomic force microscope (AFM) and an optical microscope. Polyethylene oxide) (PEO) dissolved in water or chloroform was studied in greater detail. PEO fibers spun from aqueous solution show a “beads on a string” morphology. An AFM study showed that the surface of these fibers is highly ordered. The “beads on a string” morphology can be avoided if PEO is spun from solution in chloroform; the resulting fibers show a lamellar morphology. Polyvinylalcohol (PVA) dissolved in water and cellulose acetate dissolved in acetone were additional polymer/solvent systems which were investigated. Furthermore, the electrospinning process was studied: different experimental lay-outs were tested, electrostatic fields were simulated, and voltage - current characteristics of the electrospinning process were recorded.  相似文献   

11.
We report a facile way of preparing microfluidic channels filled with electrospun functional fibers. Patterned elastic molds were in tight contact with electrospun fiber mats without any leak of the analyte solution. As an example of the simple devices, we demonstrated a microfluidic protein chip selectively purifying histidine‐tagged proteins. Highly mesoporous nitrilotriacetic acid‐functionalized polystyrene (PS‐NTA) fibers were produced by taking advantage of interpenetrating phase separation between PS and PEO during electrospinning. The specific interaction of Ni‐complexed PS‐NTA fibers with histidine enabled us to immobilize only target proteins from highly heterogeneous protein mixtures. The easy process to fabricate functionalized microchannels combined with the high production throughput from electrospinning may greatly contribute to chip‐based chromatographic and bioanalytical devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

12.
Fairly uniform chitosan (CS)/poly(ethylene oxide) (PEO) ultrafine fibers containing silver nanoparticles (AgNPs) were successfully prepared by electrospinning of CS/PEO solutions containing Ag/CS colloids by means of in situ chemical reduction of Ag ions. The presence of AgNPs in the electrospun ultrafine fibers was confirmed by X-ray diffraction patterns. The AgNPs were evenly distributed in CS/PEO ultrafine fibers with the size less than 5 nm observed under a transmission electron microscope. X-ray photoelectron spectroscopy suggested that the existence of Ag―O bond in the composite ultrafine fibers led to the tight combination between Ag and CS. Evaluation of antimicrobial activities of the electrospun Ag/CS/PEO fibrous membranes against Escherichia coli showed that the AgNPs in the ultrafine fibers significantly enhanced the inactivation of bacteria.  相似文献   

13.
In this article, we report on the production by electrospinning of P3HT/PEO, P3HT/PEO/GO, and P3HT/PEO/rGO nanofibers in which the filler is homogeneously dispersed and parallel oriented along the fibers axis. The effect of nanofillers' presence inside nanofibers and GO reduction was studied, in order to reveal the influence of the new hierarchical structure on the electrical conductivity and mechanical properties. An in‐depth characterization of the purity and regioregularity of the starting P3HT as well as the morphology and chemical structure of GO and rGO was carried out. The morphology of the electrospun nanofibers was examined by both scanning and transmission electron microscopy. The fibrous nanocomposites are also characterized by differential scanning calorimetry to investigate their chemical structure and polymer chains arrangements. Finally, the electrical conductivity of the electrospun fibers and the elastic modulus of the single fibers are evaluated using a four‐point probe method and atomic force microscopy nanoindentation, respectively. The electrospun materials crystallinity as well as the elastic modulus increase with the addition of the nanofillers while the electrical conductivity is positively influenced by the GO reduction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
Poly(trimethylene terephthalate) (PTT) nanocomposites containing carbon nanotubes (CNTs) with different surface structure and aspect ratio were prepared by melt compounding for electrospinning. The dispersion state of the CNTs in the composites was then examined utilizing rheology tools. The results show that carboxylic surface functionalized CNTs present better dispersion in the matrix than hydroxy surface functionalized CNTs because the former has stronger affinity to the PTT. Besides surface functionalization, the aspect ratio of CNTs is also vital to their final dispersion. The CNTs with lower aspect ratio are dispersed as individuals or small bundles while those with higher aspect ratio are dispersed mainly as flocs with large hydrodynamic radius, showing higher effective volume fraction. The presence of CNTs has a large influence on the morphologies of electrospun fiber and on the appearances of CNTs in the fibers. In the presence of CNTs with lower aspect ratio, continuous composite fibers are obtained. But the structure of those continuous fibers highly depends on the surface group of CNTs. Carboxylic surface functionalized CNTs are well embedded by the PTT and oriented along the fiber axis during electrospinning, leading to bead-free and uniform fiber morphology; while hydroxy surface functionalized CNTs show tortuous conformations with less orientation in the fibers, and as a result, the obtained fibers show beaded and misshaped morphologies. In the case of higher aspect ratio, however, the CNTs prefer to exist as entanglements or knots in the streamlines, and thereby only beaded or even uncontinuous fibers are obtained. Therefore, the formation and fiber morphology of PTT/CNT composite fibers obtained by electrospinning strongly depend on the surface functional groups of the CNTs, as well as on the CNT structure.  相似文献   

15.
Electrospinning is a simple and convenient technique to produce polymer fibers with diameters ranging from several nanometers to a few micrometers. Different types of polymer fibers have been prepared by electrospinning for various applications. Among different post‐treatment methods of electrospun polymer fibers, the annealing process plays a critical role in controlling the fiber properties. The morphology changes of electrospun polymer fibers under annealing, however, have been little studied. Here we investigate the annealing effect of electrospun poly(methyl methacrylate) (PMMA) fibers and their transformation into PMMA microspheres. PMMA fibers with an average size of 2.39 μm are first prepared by electrospinning a 35 wt% PMMA solution in dimethylformamide. After the electrospun fibers are thermally annealed in ethylene glycol, a non‐solvent for PMMA, the surfaces of the fibers undulate and transform into microspheres driven by the Rayleigh instability. The driving force of the transformation process is the minimization of the interfacial energy between the polymer fibers and ethylene glycol. The sizes of the microspheres fit well with the theoretical predictions. Longer annealing times are found to be required at lower temperatures to obtain the microspheres.  相似文献   

16.
Polyvinylidene fluoride (PVDF) is a significant polymer in the formation of nanofiber webs via the electrospinning technique. In this paper, three PVDF-wrinkled fiber webs with different molecular weights (MWs) (180000, 275000, and 530000) were generated via the electrospinning method by using tetrahydrofuran/N,N-dimethylformamide at the solvent ratio of 1:1 as a mixed solvent. The formation mechanism of the wrinkled electrospun PVDF fibers is demonstrated. Furthermore, the relationships between the MW and the surface structure, mechanical properties, crystalline phases, and piezoelectric properties of electrospun PVDF fibers are comprehensively investigated. The results reported that the surface structure, mechanical properties, crystalline phases, and piezoelectric properties of wrinkled electrospun PVDF fibers can be affected intensely by maneuvering the MW. We believe this study can be served as a good reference for the effect of MW on the morphology and properties of electrospun fibers.  相似文献   

17.
By means of the electrospinning technique we have successfully synthesized cyclodextrin (CD) functionalized polyethylene oxide (PEO) nanofibers (PEO/CD) with the ultimate goal to develop functional nanowebs. Three different types of CDs; α-CD, β-CD and γ-CD are incorporated individually in electrospun PEO nanofibers. The aqueous solutions containing different amount of PEO (3%, 3.5% and 4% (w/v), with respect to solvent) and CDs (25% and 50% (w/w), with respect to PEO) are electrospun and bead-free nanofibers are obtained. The presence of the CDs in the PEO solutions is found to facilitate the electrospinning of bead-free nanofibers from the lower polymer concentrations and this behavior is attributed to the high conductivity and viscosity of the PEO/CD solutions. The presence of CDs in the electrospun PEO nanofibers is confirmed by Fourier transform infrared (FTIR) spectroscopy studies. The 2-D X-ray diffraction (XRD) spectra of PEO/CD nanowebs did not show any significant diffraction peaks for CDs indicating that the CD molecules are distributed within the polymer matrix without any phase separated crystalline aggregates.  相似文献   

18.
Summary: Uniform core‐sheath nanofibers are prepared by electrospinning a water‐in‐oil emulsion in which the aqueous phase consists of a poly(ethylene oxide) (PEO) solution in water and the oily phase is a chloroform solution of an amphiphilic poly(ethylene glycol)‐poly(L ‐lactic acid) (PEG‐PLA) diblock copolymer. The obtained fibers are composed of a PEO core and a PEG‐PLA sheath with a sharp boundary in between. By adjusting the emulsion composition and the emulsification parameters, the overall fiber size and the relative diameters of the core and the sheath can be changed. A mechanism is proposed to explain the process of transformation from the emulsion to the core‐sheath fibers, i.e., the stretching and evaporation induced de‐emulsification. In principle, this process can be applied to other systems to prepare core‐sheath fibers in place of concentric electrospinning and it is especially suitable for fabricating composite nanofibers that contain water‐soluble drugs.

Schematic mechanism for the formation of core‐sheath composite fibers during emulsion electrospinning.  相似文献   


19.
Hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) is a modified β‐cyclodextrin (β‐CD) derivative, which is toxicologically harmless to mammals and other animals. HP‐β‐CD is electrospun from an aqueous solution by blending with a non‐toxic, biocompatible, synthetic polymer poly(ethylene oxide) (PEO). Aqueous solutions containing different HP‐β‐CD/PEO blends (50:50–80:20) with variable concentrations (4 wt%–12 wt%) were used. Scanning electron microscope was used to investigate the morphology of the fibers, and Fourier transform infrared spectroscopy analysis confirmed the presence of HP‐β‐CD in the fiber. Uniform nanofibers with an average diameter of 264, 244, and 236 nm were obtained from 8 wt% solution of 50:50, 60:40, and 70:30 HP‐β‐CD/PEO, respectively. The average diameter of the fiber was decreased with increasing of HP‐β‐CD/PEO ratio. However, a higher proportion of HP‐β‐CD in the spinning solution increased beads in the fibers. The polymer concentration had no significant effect on the fiber diameter. The most uniform fibers with the narrowest diameter distribution were obtained from the 8 wt% of 50:50 solution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Polymer fibers composed of poly(ethylene oxide) (PEO) and nanoclay were fabricated by electrospinning. The morphology of the composite nanofibers was characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), which showed aligned nanoclays in the fibers. Polarized Fourier transform infrared (FT-IR) spectroscopy revealed that the PEO chains in the composite fibers exhibit a higher degree of orientation than that in PEO nanofibers containing no nanoclay. It is believed that spatial confinement is present in the electrospun nanofibers, which results in the enforcement of the mutual restriction. The anisotropic hierarchical nanostructure may have potential applications in optics, mechanical materials, and biomedical materials for cell culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号