首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glass-fiber reinforced epoxy composites were fabricated from the matrix resin liquid diglycidyl ether of bisphenol-C (DGEBC) using various amines as curing agents with and without fortifier (20 phr). The epoxy laminates were evaluated for their mechanical properties, such as flexural strength, interlaminar shear strength (ILSS), tensile strength and shore-D hardness. Dielectric properties, such as the dielectric constant, tan δ, dielectric loss and the resistivity of the laminated samples, were measured. The effect of the chemical reagents on the mechanical properties (i.e. flexural strength, lLSS) was also studied.  相似文献   

2.
A new epoxy resin (Bis-ENA) containing naphthalene structure linked with a 1,4-bis(isopropylidene)phenylene was synthesized and was confirmed by elemental analysis, infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy. To estimate the effect of naphthalene moiety on the cured polymer, an epoxy resin (Bis-EP) having phenyl moiety was synthesized, and curing behaviors of Bis-ENA and Bis-EP with phenol novolac were evaluated by differential scanning calorimetry. The incorporation of naphthalene structure into the resin backbone increased the curing temperature and reduced the curing reactivity. Thermal properties of the cured polymers obtained from Bis-ENA and Bis-EP with phenol novolac were examined by thermomechanical analysis and dynamic mechanical analysis. Mechanical properties and moisture resistance were evaluated by flexural strength, flexural modulus, and moisture absorption measurements. The cured polymer obtained from Bis-ENA showed higher glass transition temperature, higher flexural modulus, lower thermal expansion, and lower moisture absorption than that from Bis-EP. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3063–3069, 1999  相似文献   

3.
A synthetic strategy to incorporate catechol functional groups into benzoxazine thermoset monomers was developed, leading to a family of bioinspired small‐molecule resins and main‐chain polybenzoxazines derived from biologically available phenols. Lap‐shear adhesive testing revealed a polybenzoxazine derivative with greater than 5 times improved shear strength on aluminum substrates compared to a widely studied commercial benzoxazine resin. Derivative synthesis identified the catechol moiety as an important design feature in the adhesive performance and curing behavior of this bioinspired thermoset. Favorable mechanical properties comparable to commercial resin were maintained, and glass transition temperature and char yield under nitrogen were improved. Blending of monomers with bioinspired main‐chain polybenzoxazine derivatives provided formulations with enhanced shear adhesive strengths up to 16 MPa, while alloying with commercial core–shell particle‐toughened epoxy resins led to shear strengths exceeding 20 MPa. These results highlight the utility of bioinspired design and the use of biomolecules in the preparation of high‐performance thermoset resins and adhesives with potential utility in transportation and aerospace industries and applications in advanced composites synthesis.  相似文献   

4.
A bisphenol A-based epoxy resin was modified with 5 wt% organically modified sepiolite (Pangel B40) and thermally cured using two different curing agents: an aliphatic diamine (Jeffamine D230, D230) and a cycloaliphatic diamine (3DCM). The morphology of the cured materials was established by scanning and transmission electron microscopy analysis. The thermal stability, thermo-mechanical properties, and flexural behaviour of the sepiolite-modified matrices were evaluated and compared with the corresponding neat matrix. The initial thermal decomposition temperature did not change with the addition of sepiolite. The flexural modulus of the epoxy matrix slightly increases by the incorporation of the organophilic sepiolite. The flexural strength of the sepiolite modified resin cured with D230 increased by a 10% while the sepiolite modified resin cured with 3DCM resulted in a lower flexural strength compared with the unmodified resin. The reduced flexural strength was attributed to the stress concentrations caused by the sepiolite modifier, which rendered the resins more brittle.  相似文献   

5.
The physical and mechanical properties of blends composed of two kinds of epoxy resins of different numbers of functional groups and chemical structure were studied.One of the resins was a bifunctional epoxy resin based on diglycidyl ether ofbisphenol A and the other resin was a multifunctional epoxy novolac resin.Attempt was made to establish a correlation between the structure and the final properties of cured epoxy samples.The blend samples containing high fraction of multifunctional epoxy resin showed higher solvent resistance and lower flexural modulus compared with the blends containing high fraction of bifunctional epoxy resin.The epoxy blends showed significantly higher ductility under bending test than the neat epoxy samples.The compressive modulus and strength increased with increasing of multifunctional epoxy in the samples,probably due to enhanced cross-link density and molecular weight.Morphological analysis revealed the presence of inhomogeneous sub-micrometer structures in all samples.The epoxy blends exhibited significantly higher fracture toughness (by 23% at most) compared with the neat samples.The improvement of the fracture toughness was attributed to the stick-slip mechanism for crack growth and activation of shear yielding and plastic deformation around the crack growth trajectories for samples with higher content of bifunctional epoxy resin as evidenced by fractography study.  相似文献   

6.
Four sorts of epoxy resins containing degradable acetal linkages were synthesized by the reaction of bisphenol A (BA) or cresol novolak (CN) resin with vinyl ethers containing a glycidyl group [4‐vinlyoxybutyl glycidyl ether (VBGE) and cyclohexane dimethanol vinyl glycidyl ether (CHDMVG)] and cured with known typical amine‐curing agents. The thermal and mechanical properties of the cured resins were investigated. Among the four cured epoxy resins, the CN‐CHDMVG resin (derived from CN and CHDMVE) exhibited relatively high glass transition temperature (Tg = ca. 110 °C). The treatment of these cured epoxy resins with aqueous HCl in tetrahydrofuran (THF) at room temperature for 12 h generated BA and CN as degradation main products in high yield. Carbon fiber‐reinforced plastics (CFRPs) were prepared by heating the laminated prepreg sheets with BA‐CHDMVG (derived from BA and CHDMVE) and CN‐CHDMVG, in which strands of carbon fibers are impregnated with the epoxy resins containing conventional curing agents and curing accelerators. The obtained CFRPs showed good appearance and underwent smooth breakdown with the aqueous acid treatment in THF at room temperature for 24 h to produce strands of carbon fiber without damaging their surface conditions and tensile strength. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
A novel thermal latent curing agent, 2MZS, was obtained through the reaction of 2‐methylimidazole (2MZ) and a symmetrically carboxyl‐functionalized star‐shaped molecule based on cyclotriphosphazene (N3P3‐COOH). In the complex, the resonance of N3P3‐COOH reduced the activity of lone electron pairs on the pyridine‐type nitrogen atom of imidazole ring, suppressing the nucleophilic attack and crosslinking reaction between 2MZ and epoxy resin. As a result, the storage stability was improved distinctly for the one‐pot epoxy compound, which could be steadily stored at room temperature for nearly 1 month. Nonisothermal DSC revealed a delayed initiation curing mechanism of the prepared one‐pot system, and which could undergo rapid curing reaction upon raising the temperature. Moreover, the introduction of terminally polyfunctional star‐shaped phosphazene derivative could promote the curing process at elevated temperature, as well as improve the chain rigidity of the cured resin by chemical incorporation into the cross‐linked network, thus endowing the cured resin with enhanced glassy storage modulus. The epoxy thermoset exhibited the highest glass transition temperature and thermal degradation temperature when 20 wt% of 2MZS was used. It is suggested that the novel latent curing agent is potential for high‐performance one‐pot epoxy compound, particularly recommended for application in electronic packaging fields.  相似文献   

8.
采用戊二酸酐为固化剂,乙酰丙酮锌为催化剂制备了一种综合性能优异的高性能可回收环氧树脂.系统研究了固化剂及催化剂含量对树脂结构、热学及动态性能的影响,实现了树脂组成的优化设计.基于酯交换反应的热可逆性,制备的vitrimer树脂通过物理热压方法可实现良好回收,力学强度保持率可达80%.采用RTM工艺制备的碳纤维织物增强vitrimer树脂复合材料表现出与传统热固性树脂基复合材料相当的力学性能,并且通过醇类溶剂热降解树脂的方法,可实现复合材料中碳纤维的高效无损回收,回收率近100%.  相似文献   

9.
An intercrosslinked network of cyanate ester (CE)-bismaleimide (BMI) modified epoxy matrix system was made by using epoxy resin, 1,3-dicyanatobenzene and bismaleimide (N,N-bismaleimido-4,4-diphenyl methane) with diaminodiphenylmethane as curing agent. BMI-CE-epoxy matrices were characterised using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and heat deflection temperature (HDT) analysis. The matrices, in the form of castings, were characterised for their mechanical properties such as tensile strength, flexural strength and unnotched Izod impact test as per ASTM methods. Mechanical studies indicated that the introduction of cyanate ester into epoxy resin improves the toughness and flexural strength with reduction in tensile strength and glass transition temperature, whereas the incorporation of bismaleimide into epoxy resin influences the mechanical and thermal properties according to its percentage content. DSC thermograms of cyanate ester as well as BMI modified epoxy resin show an unimodal reaction exotherm. Electrical properties were studied as per ASTM method and the morphology of the BMI modified epoxy and CE-epoxy systems were studied by scanning electron microscope.  相似文献   

10.
制备了具有环氧丙基侧链的对位芳纶(PPTA-ECH)和间位芳纶(PMIA-ECH),并将其用做对位芳纶(PPTA)织物/环氧树脂复合材料中PPTA织物的涂覆剂。采用场发射扫描电子显微镜(FE-SEM)及XPS等方法对PPTA织物表面的PPTA-ECH涂层结构进行了表征。考察了PPTA-ECH和PMIA-ECH涂覆的PPTA织物/环氧树脂复合材料的层间剪切强度和面内剪切强度,并与未经涂覆的PPTA织物复合材料的性能作比较。结果表明,PPTA-ECH和PMIA-ECH可显著改善PPTA织物和环氧树脂之间的界面性能。涂覆了PPTA-ECH及PMIA-ECH的PPTA织物/环氧树脂复合材料的层间剪切强度(ILSS)比未经涂覆的复合材料分别提高了26.20%和14.76%,面内剪切强度(ISS)分别提高了26.98%和11.86%。由于PPTA-ECH对PPTA纤维具有更强的亲和能力,因此PPTA-ECH在层间剪切强度和面内剪切强度方面的增强效果均优于PMIA-ECH。对PPTA-ECH在PPTA纤维表面铺展与吸附及对复合材料的增强机理也进行了初步探讨。作为新型涂覆剂,PPTA-ECH在对位芳纶复合材料的开发应用方面具有潜在的应用前景。  相似文献   

11.
动态固化聚丙烯/环氧树脂共混物的研究   总被引:3,自引:0,他引:3  
将动态硫化技术应用于热塑性树脂 热固性树脂体系 ,制备了动态固化聚丙烯 (PP) 环氧树脂共混物 .研究了动态固化PP 环氧树脂共混物中两组分的相容性、力学性能、热性能和动态力学性能 .实验结果表明 ,马来酸酐接枝的聚丙烯 (PP g MAH)作为PP和环氧树脂体系的增容剂 ,使分散相环氧树脂颗粒变细 ,增加了两组分的界面作用力 ,改善了共混物的力学性能 .与PP相比 ,动态固化PP 环氧树脂共混物具有较高的强度和模量 ,含 5 %环氧树脂的共混物拉伸强度和弯曲模量分别提高了 30 %和 5 0 % ,冲击强度增加了 15 % ,但断裂伸长率却明显降低 .继续增加环氧树脂的含量 ,共混物的拉伸强度和弯曲模量增加缓慢 ,冲击强度无明显变化 ,断裂伸长率进一步降低 .动态力学性能分析 (DMTA)表明动态固化PP 环氧树脂共混物是两相结构 ,具有较高的储能模量 (E′)  相似文献   

12.
The quest for sustainable materials as a consequence of a global drive to mitigate climate change has led to a focus on natural fiber–reinforced composite materials. In this study, skillful ply angle arrangement of bark cloth–reinforced laminar epoxy composites was carried out for the first time using vacuum-assisted resin transfer molding, and the composites fabricated were characterized for the effect of the layering pattern on their static and dynamic mechanical properties. Tensile strength and flexural strength were shown to be dependent on the ply angle arrangement. Dynamic mechanical analysis of the composites showed a glass transition temperature of 70°C, and the storage modulus and mechanical damping properties showed that the developed composites can withstand considerable loads and have excellent fiber-to-matrix adhesion.  相似文献   

13.
Two kinds of bio‐resourced reactive diluents have been synthesized from linseed oil. The prepared epoxidized linseed oil (ELO) and the cyclocarbonated linseed oil (CLO) were separately blended with a petroleum‐based tetra‐functional epoxy resin (TGDDM) to improve its processability and to overcome the brittleness of the thermoset network therefrom. The linseed oil modifications were spectrally established, and processability improvement of the resin blends was rheologically confirmed. The curing of samples was studied by differential scanning calorimetry, and their mechanical properties (ie, tensile, flexural, fracture toughness, and adhesion) were investigated as well. Scanning electron microscopy images were obtained to reconfirm the toughness improvement of the modified thermosets. In contrast of the epoxidized soybean oil (ie, the most conventionally studied bio‐based reactive diluent), ELO and CLO had no negative effects on the thermoset material characteristics. They improved properties such as tensile strength (up to 43.2 MPa), fracture toughness (1.1 MPa m1/2), and peel‐adhesion strength (4.5 N/25 mm). It was concluded that ELO and CLO were efficient reactive diluents to be used in formulations of polymer composites, surface coatings, and structural adhesives based on epoxy resins.  相似文献   

14.
应用不同化学结构、分子量及其分布的环氧树脂进行了电子束辐射固化实验 ,对固化物进行了动态力学分析 ,研究了不同样品凝胶含量、内耗tanδ及动态模量的变化规律 .分析结果表明环氧树脂辐射反应活性与其化学结构有很大关系 ,酚醛型环氧树脂的辐射反应活性高 ,固化后高温模量及玻璃化温度较高 ,而脂环族环氧树脂反应活性小 .在低辐射剂量下 ,环氧树脂的固化度随分子量增大略有下降 ,但固化物的玻璃化温度随分子量增加而升高 .增大辐射剂量 ,树脂固化度的提高受分子量大小的影响很小 ,分子量较大样品的网络均匀程度有所提高 ,在较高反应程度下 ,玻璃化温度主要受固化度影响 .树脂固化程度也是决定其模量高低的主要因素 ,而在固化程度相近的情况下 ,分子量的影响作用很大 .在同样辐射剂量下 ,分子量分布宽的树脂固化反应程度高 ,但交联网络均匀性低 .  相似文献   

15.
The curing characteristics of carboxylic functionalized glucose resin (glucose maleic acid ester vinyl resin: GMAEV) and epoxy resin have been studied using DSC and FTIR methods. Exothermic reactions attributed to esterification and etherification reactions of the hydroxyl and carboxyl functionalities of GMAEV with the epoxy groups were identified. Exothermic reactions showed very different patterns according to the degree of carboxyl group substituent of GMAEV. The results showed that esterification reaction occurs in the early stage of cure and then etherification followed after completion of the esterification. A cured matrix containing epoxy resin and 50 wt.% of GMAEV was prepared and characterized. The cured matrix showed thermal stability up to 300 °C. The average glass transition temperature and storage modulus of the matrix were as high as 95 °C and 2700 MPa, respectively. The cured matrix of epoxy resin and GMAEV with higher degree of carboxyl group was found to have a lower density due to the formation of bulky groups in the crosslinks.  相似文献   

16.
Bisphenol A dicyanate ester (BADCy) was modified with different amounts of an engineering thermoplastic, polysulfone (PS) to improve impact strength of the parent resin. Differential scanning calorimetry of the blends suggested that addition of PS widens the curing exotherm of the BADCy considerably. FTIR of cured neat resins indicated total conversion of cyanate functional groups into triazine rings by cyclotrimerization. The cured neat resins showed phase separated morphology with cyanate ester as the continuous phase. The modified resins were shown to have better thermal, hygrothermal and impact strength properties. However, when glass fiber reinforced composites were made using partially polymerized BADCy and PS, very little or no phase separation in the resin was noticed. Flexural and impact strength measurement of composites showed that PS modification has compromised the flexural properties and only retained the impact strength of the parent resin containing composite. This study thus suggests that improvements realized in thermoplastic modification of monomeric BADCy are not directly transferable to composites using a partially prepolymerized BADCy.  相似文献   

17.
Bismaleimide (BMI) resins with good thermal stability, fire resistance, low water absorption, and good retention of mechanical properties at elevated temperatures, especially in hot/wet environments, have attracted more attention in the electronic and aerospace industries. However, their relatively high dielectric constant limits their application in the aforementioned fields. In this work, a new promising approach is presented that consists of the formation of a self‐catalytic thermoset/thermoset interpenetrating polymer network. Interpenetrating polymer networks (IPNs) based on modified BMI resin (BMI/DBA) and cyanate ester (b10) were synthesized via prepolymerization followed by thermal curing. The self‐catalytic curing mechanism of BMI/DBA‐CE IPN resin systems was examined by differential scanning calorimetry. The dielectric properties of the cured BMI/DBA‐CE IPN resin systems were evaluated by a dielectric analyzer and shown in dielectric properties‐temperature‐log frequency three‐dimensional plots. The effect of temperature and frequency on the dielectric constant of the cured BMI/DBA‐CE IPN resin systems is discussed. The composition effect on the dielectric constant of the cured IPN resin systems was analyzed on the basis of Maxwell's equation and rule of mixture. The obtained BMI/DBA‐CE IPN resin systems have the combined advantages of low dielectric constant and loss, high‐temperature resistance, and good processability, which have many applications in the microelectronic and aerospace industries. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1123–1134, 2003  相似文献   

18.
The strength, performance, and application of carbon fiber reinforced plastic (CFRP) composites are directly affected by the interfacial bonding between fiber and resin. Wet winding technology is a commonly used composite productive process, and improving interfacial bonding of composites by on-line treatment has always been the focus of attention. In this paper, an on-line ultrasonic treatment system is designed and realized, the resin content of prepregs is determined by the dissolution method; standard deviation and dispersion coefficient are also calculated. The surface morphology, internal structure of prepregs, and the component of resin are observed and analyzed using a Metallurgical Microscope, scanning electron microscope (SEM), and near infrared radiation spectra (NIRS). The strength and performance of prepregs [(tensile strength, bending strength, tensile modulus of elasticity, bending modulus of elasticity, and interlaminar shear strength (ILSS)] are also tested. The results show the on-line ultrasonic treatment system can effectively improve the interfacial bonding of CFRP composites and enhance the strength and performance of CFRP composites.  相似文献   

19.
A phosphorus-containing bio-based epoxy resin (EADI) was synthesized from itaconic acid (IA) and 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO). As a matrix, its cured epoxy network with methyl hexahydrophthalic anhydride (MHHPA) as the curing agent showed comparable glass-transition temperature and mechanical properties to diglycidyl ether in a bisphenol A (DGEBA) system as well as good flame retardancy with UL94 V-0 grade during a vertical burning test. As a reactive flame retardant, its flame-resistant effect on DGEBA/MHHPA system as well as its influence on the curing behavior and the thermal and mechanical properties of the modified epoxy resin were investigated. Results showed that after the introduction of EADI, not only were the flame retardancy determined by vertical burning test, LOI measurement, and thermogravimetric analysis significantly improved, but also the curing reactivity, glass transition temperature (T g), initial degradation temperature for 5% weight loss (T d(5%)), and flexural modulus of the cured system improved as well. EADI has great potential to be used as a green flame retardant in epoxy resin systems.  相似文献   

20.
In this paper, a polyether-ether-ketone (PEEK)/epoxy composite was prepared by using PEEK microparticles as the reinforcement. The nonisothermal differential scanning calorimetry (DSC) test was used to evaluate the curing reaction of PEEK/epoxy resin system. The curing kinetics of this system were examined utilizing nonisothermal kinetic analyses (Kissinger and Ozawa), isoconversional methods (Flynn-Wall-Ozawa and Kissinger-Akahira-Sunose) and an autocatalytic reaction model. During these analyses, the kinetic parameters and models were obtained, the curing behavior of PEEK/epoxy resin system under dynamic conditions was predicted. The results show that isoconversional methods can adequately interpret the curing behavior of PEEK/epoxy resin system and that the theoretical DSC curves calculated by the autocatalytic reaction model are in good agreement with experimental data. Furthermore, the tensile elongation at break, tensile strength, flexural strength, compression strength and compression modulus increased by 81.6%, 33.66%, 36.53%, 10.98% and 15.14%, respectively, when PEEK microparticles were added in epoxy resin composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号