首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Model updating should be correlated with experimental data to ensure that it models the dynamics of the real structure and the updated model predicts the dynamics of a structure more accurately. Considering that the iterative methods for model updating have aroused little public attention, this paper studies an iterative algorithm for quadratic model updating problems which can incorporate the measured modal data into the finite element model to produce an adjusted finite element model on the mass, gyroscopic and stiffness matrices that closely match the experimental modal data. By this method, the best approximation symmetric and skew-symmetric solutions can be obtained by choosing a convergence factor. Numerical example shows that the introduced iterative algorithm is quite efficient.  相似文献   

2.
A method based on constrained optimization for updating of an acoustic finite element model using pressure response is proposed in this paper. The constrained optimization problem is solved using sequential quadratic programming algorithm. Updating parameters related to the properties of the sound absorbers and the measurement errors are considered. Effectiveness of the method is demonstrated by numerical studies on a 2D rectangular cavity and a car cavity. It is shown that the constrained formulation, that includes lower and upper bounds on the updating parameters in the form of inequality constraints, is important for obtaining a correct updated model. It is seen that the proposed updating method is not only able to effectively update the model to obtain a close match between the finite element model pressure response and the reference pressure response, but is also able to identify the correction factors to the parameters in error with reasonable accuracy.  相似文献   

3.
In this paper we develop an efficient numerical method for the finite element model updating of damped gyroscopic systems. This model updating of damped gyroscopic systems is proposed to incorporate the measured modal data into the finite element model to produce an adjusted finite element model on the damping and gyroscopic matrices that closely match the experimental modal data.  相似文献   

4.
In this paper, we concern the inverse problem of constructing a monic quadratic pencil which possesses the prescribed partial eigendata, and the damping matrix and stiffness matrix are symmetric tridiagonal. Furthermore, the stiffness matrix is positive semi-definite and weakly diagonally dominant, which has positive diagonal elements and negative off-diagonal elements. Based on the solution of the inverse eigenvalue problem, we apply the alternating direction method with multiplier to solve the finite element model updating problem for the serially linked mass-spring system. The positive semi-definiteness of stiffness matrix, nonnegativity of stiffness and the physical connectivity of the original model are preserved. Numerical results show that our proposed method works well.  相似文献   

5.
Quadratic finite element model updating problem (QFEMUP), to be studied in this paper, is concerned with updating a symmetric nonsingular quadratic pencil in such a way that, a small set of measured eigenvalues and eigenvectors is reproduced by the updated model. If in addition, the updated model preserves the large number of unupdated eigenpairs of the original model, the model is said to be updated with no spill-over. QFEMUP is, in general, a difficult and computationally challenging problem due to the practical constraint that only a very small number of eigenvalues and eigenvectors of the associated quadratic eigenvalue problem are available from computation or measurement. Additionally, for practical effectiveness, engineering concerns such as nonorthogonality and incompleteness of the measured eigenvectors must be considered. Most of the existing methods, including those used in industrial settings, deal with updating a linear model only, ignoring damping. Only in the last few years a small number of papers been published on the quadratic model updating; several of the above issues have been dealt with both from theoretical and computational point of views. However, mathematical criterion for existence of solution has not been fully developed. In this paper, we first (i) prove a set of necessary and sufficient conditions for the existence of a solution of the no spill-over QFEMUP, then (ii) present a parametric representation of the solution, assuming a solution exists and finally, (iii) propose an algorithm for QFEMUP with no spill-over and incomplete measured eigenvectors. Interestingly, it is shown that the parametric representation can be constructed with the knowledge of only the few eigenvalues and eigenvectors that are to be updated and the corresponding measured eigenvalues and eigenvectors—complete knowledge of eigenvalues and eigenvectors of the original pencil is not needed, which makes the solution readily applicable to real-life structures.  相似文献   

6.
An efficient iterative method for updating the mass, gyroscopic and stiffness matrices simultaneously using a few of complex measured modal data is developed. By using the proposed iterative method, the unique symmetric solution can be obtained within finite iteration steps in the absence of roundoff errors by choosing a special kind of initial matrices. Numerical results show that the presented method can be used to update finite element models to get better agreement between analytical and experimental modal parameters.  相似文献   

7.
Finite element structural updating based on measured data may inherent significant errors due to uncertainties in the updated physical parameter matrices. This study presents analytical equations to estimate the change in the physical parameter matrices based on the measured modal data of dynamic systems and the measured displacement data of static systems. The equations for the parameter estimation are derived by minimizing cost functions in the satisfaction of the eigenvalue equation, the mode shape orthogonality requirements for the dynamic system, and the satisfaction of the measured displacement data for the static systems. The proposed method utilizes the Moore–Penrose inverse for the inverse of the rectangular matrices without using Lagrange multipliers. Comparing the analytical results with Berman & Nagy’s method and Yang & Chen’s method, this study demonstrates that the derived equations take simpler forms and produce more accurate results. The proposed method can be widely utilized in predicting static or dynamic parameter matrices for the design and analysis of any structure.  相似文献   

8.
In this paper we are concerned with a weighted least-squares finite element method for approximating the solution of boundary value problems for 2-D viscous incompressible flows. We consider the generalized Stokes equations with velocity boundary conditions. Introducing the auxiliary variables (stresses) of the velocity gradients and combining the divergence free condition with some compatibility conditions, we can recast the original second-order problem as a Petrovski-type first-order elliptic system (called velocity–stress–pressure formulation) in six equations and six unknowns together with Riemann–Hilbert-type boundary conditions. A weighted least-squares finite element method is proposed for solving this extended first-order problem. The finite element approximations are defined to be the minimizers of a weighted least-squares functional over the finite element subspaces of the H1 product space. With many advantageous features, the analysis also shows that, under suitable assumptions, the method achieves optimal order of convergence both in the L2-norm and in the H1-norm. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

9.
The mortar finite element method is a special domain decomposition method, which can handle the situation where meshes on different subdomains need not align across the interface. In this article, we will apply the mortar element method to general variational inequalities of free boundary type, such as free seepage flow, which may show different behaviors in different regions. We prove that if the solution of the original variational inequality belongs to H2(D), then the mortar element solution can achieve the same order error estimate as the conforming P1 finite element solution. Application of the mortar element method to a free surface seepage problem and an obstacle problem verifies not only its convergence property but also its great computational efficiency. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

10.
曹礼群 《计算数学》1994,16(4):362-371
p-version有限元的快速高精度算法曹礼群(湘潭大学)THEFASTp-VERSIONFINITEELEMENTMETHODWITHHIGHACCURACY¥CaoLi-qun(XiangtanUniversity)Abstract:Inthis...  相似文献   

11.
12.
A numerical study of the efficiency of the modified conjugate gradients (MCG) is performed using different preconditioning schemes. The MCG behavior is evaluated in connection with the solution of large linear sets of symmetric positive definite (p.d.) equations, arising from the finite element (f.e.) integration of partial differential equations of parabolic and elliptic type and the analysis of the leftmost eingenspectrum of the corresponding matrices. A simple incomplete Cholesky factorization ICCG(O) having the same sparsity pattern as the original problem is compared with a more complex technique ICAJ (Ψ) where the triangular factor is allowed to progressively fill in depending on a rejection parameter Ψ. The performance of the preconditioning algorithms is explored on finite element equations whose size N ranges between 150 and 2300. The results show that an optimal Ψopt may be found which minimizes the overall CPU time for the solution of both the linear system and the eigenproblem. The comparison indicates that ICAJ (Ψopt) is not significantly more efficient than ICCG(O), which therefore appears to be a simple, robust, and reliable method for the preconditioning of large sparse finite element models.  相似文献   

13.
为提高随机模型修正效率,减小计算量,提出了一种基于Kriging模型和提升小波变换的随机模型修正方法.首先,对加速度频响函数进行提升小波变换,提取第5层近似系数代替原频响函数.其次,采用拉丁超立方抽样抽取待修正样本,将其作为Kriging模型的输入,对应的近似系数作为输出,构建Kriging模型.提出了一种引入莱维飞行(Lévy flight)的蝴蝶优化算法(LBOA),并将其应用于Kriging模型相关参数的寻优中,提高Kriging模型的精度.最后,以最小化Wasserstein距离为目标,通过鲸鱼优化算法求解待修正参数的均值.测试函数结果表明,LBOA在寻优能力、收敛精度和稳定性等方面有了很大的提升.数值算例的修正误差均低于0.4%,验证了所提模型修正方法具有较高的修正精度和效率.  相似文献   

14.
Mathematical modelling and updating of damped dynamic systems that involve some modelling errors and subsequent analysis based on those errors will lead to inaccuracy in the results. Because measured and analytical data are unlikely to be identical due to measurement noise and model inadequacies, it is necessary to estimate more accurate parameter matrices for design and analysis. By minimizing a cost function expressed as the sum of the norms of the difference between analytical and experimental parameter matrices, this study directly derives the integrated mathematical expressions for updated physical parameter matrices. In the derivation process, the eigenfunction of a damped dynamic system is utilized as a constraint equation for the updating. It is illustrated that the proposed methods take more explicit forms and can be widely utilized in the damped and undamped systems. Based on the comparison with other methods, the validity of the proposed methods is demonstrated in numerical applications.  相似文献   

15.
The problem of finding the least change adjustment to a stiffness matrix modeled by finite element method is considered in this paper. Desired stiffness matrix properties such as symmetry, sparsity, positive semidefiniteness, and satisfaction of the characteristic equation are imposed as side constraints of the constructed optimal matrix approximation for updating the stiffness matrix, which matches measured data better. The dual problems of the original constrained minimization are presented and solved by subgradient algorithms with different line search strategies. Some numerical results are included to illustrate the performance and application of the proposed methods.  相似文献   

16.
Lotfi Abdelhakim 《PAMM》2013,13(1):245-246
In this paper, we present a numerical procedure that can be used to model the electro-mechanical coupled behavior of the dielectric actuator domain. The equation describing the electrostatical part is given by the reduced form of the Maxwell equation and the electrostatic potential [1]. The mechanical problem is described by the constitutive equations and equilibrium equations. Using the finite element method, this technique is to divide a whole problem into sub-problems. The complexity of the original problem is therefore reduced by focusing only on the most relevant areas. A finite element analysis is then performed by applying the electrostatic Maxwell pressure as Neumann boundary conditions to compute the displacements. Once the displacement is computed, the electrostatic domain or the conductor is updated. Electrostatic analysis is performed on the updated geometry and the finite element method is then used to determine the change in potential due to geometric perturbations. Once the surface charge densities are known, the new electrostatic Maxwell pressure is computed. The mechanical and electrostatic analysis is repeated until an equilibrium state is computed. The procedure is demonstrated in the paper by the solution of some two-dimensional and three-dimensional problems. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
在结构动力分析中,往往需利用结构振动测试所得的实际测量数据(如振动频率和振型),对结构分析模型进行最优修正,使之更能合理反映结构的实际性能,其实质即为计算数学中的特征值反问题.本文考虑有阻尼结构振动中的-类反问题,用一组不完备的模态测量数据修正系统质量矩阵、刚度矩阵和阻尼矩阵,通过等价正交投影思想将原问题转化成-个闭凸锥上的正交投影问题,构造-个不精确最速下降迭代法求解,并讨论了收敛性.算例表明算法是有效的.  相似文献   

18.
ABSTRACT

In this paper, a stabilized space-time finite element method for solving linear parabolic evolution problems is analyzed. The proposed method is developed on a base of a space-time variational setting, that helps on the simultaneous and unified discretization in space and in time by finite element techniques. Stabilization terms are constructed by means of classical bubble spaces. Stability of the discrete problem with respect to an associated mesh dependent norm is proved, and a priori discretization error estimates are presented. Numerical examples confirm the theoretical estimates.  相似文献   

19.
《随机分析与应用》2013,31(4):757-783
Abstract

This paper is concerned with the application of nonconforming finite element methods to stochastic partial differential equations. We present a mixed formulation of a three-field finite element method applied to an elliptic model problem involving stochastic loads. We then derive the exact form for the expected value and variance of the solution. Additionally, the rate of convergence for the stochastic error is presented. Finally, we demonstrate through numerical experiments that the method is robust and reliable.  相似文献   

20.
有限元模型修正中的最佳矩阵逼近   总被引:1,自引:0,他引:1  
1引言 在飞行器、船舶、桥梁等结构设计中,要定量、准确地进行结构动力学分析,解决飞行器、船舶、桥梁等工程结构中普遍存在的振动问题,首先必须建立结构的动力学模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号