首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present work,the precipitate compositions and precipitate amounts of these elements(including the size distribution,volume fraction,and inter-precipitate distance) on the Cu-containing 7000 series aluminum alloys(7150 and 7085 Al alloys),are investigated by anomalous small-angle x-ray scattering(ASAXS) at various energies.The scattering intensity of 7150 alloy with T6 aging treatment decreases as the incident x-ray energy approaches the Zn absorption edge from the lower energy side,while scattering intensity does not show a noticeable energy dependence near the Cu absorption edge.Similar results are observed in the 7085 alloy in an aging process(120℃) by employing in-situ ASAXS measurements,indicating that the precipitate compositions should include Zn element and should not be strongly related to Cu element at the early stage after 10 min.In the aging process,the precipitate particles with an initial average size of ~ 8 ?A increase with aging time at an energy of 9.60 ke V,while the increase with a slower rate is observed at an energy of 9.65 ke V as near the Zn absorption edge.  相似文献   

2.
The discontinuous yield behaviour (DYB) of Inconel 600 was studied during hot compression tests at temperatures in range of 850–1150°C and strain rates of 0.001–1?s?1. The yield point phenomena were observed in the temperature range of 850–1000°C and strain rates of 0.001–0.1 s?1. The DYB was modelled by considering the evolution of dislocation density at the early stages of yielding. The opposite effects of dislocation multiplication, dislocation interaction (work hardening) and dynamic recovery (DRV) were considered. It was shown that the dislocation multiplication and DRV result in flow softening, while the dislocation interaction leads to work hardening. The model was established in a way to consider the effects of various microstructural evolutions on the σ(ε) function. The discontinuous flow curves were fitted by the developed model with acceptable precision. The variations of material constants with temperature and strain rate were found physically meaningful. The dislocation multiplication parameter was determined at various temperatures and strain rates. It was concluded that the rate of dislocation multiplication increases as temperature rises or strain rate declines. Accelerated dislocation multiplication leads to less drop in yield stress between the upper and lower yield points.  相似文献   

3.
4.
Measurements of angular distribution of annihilation photons are applied to investigations of hydrogen behavior in annealed, plastically deformed, and irradiated titanium alloys. It is shown that hydrogen interaction with materials becomes more intensive in presence of structural imperfections of deformational and radiation origin. Probable mechanisms of hydrogen interaction with deformational and radiation defects are discussed.  相似文献   

5.
The paper reports on a systematic investigation into the effects of process parameters on the growth kinetics and associated changes in the structure, phase composition and mechanical properties of surface layers formed on Ti–6Al–4V alloy by plasma electrolytic oxidation (PEO) treatment in 0.05–0.2 mol l−1 solutions of sodium aluminate. Methods of gravimetric, SEM and XRD analysis, as well as microhardness and scratch testing, are employed to investigate mass transfer and phase-structure transformations in the surface layer. The probable mechanisms of layer formation are discussed, which comprise electrochemical oxidation of the Ti-electrode by OH anions, complimented by chemical precipitation of Al(OH)3 and plasma-induced transformations in the surface discharges. Running with a total yield efficiency of 20–30%, these processes lead to the formation of predominantly the Al2TiO5 phase with heterogeneous precipitation of Al2TiO5·TiO2 and 3Al2TiO5·Al2O3 eutectics. Al- and Ti-enriched constituents of this structure show hardnesses of 1050–1480 and 300–845 HK, 0.02, respectively. The layer growth rate increases with increasing electrolyte concentration, providing a maximum thickness of over 60 μm and a surface roughness (Ra) of 3–4 μm. Increasing the electrolyte pH from 12.0 to 12.8 results in smoothing and thickening of the surface layer but a lower sample weight gain, associated with an enhancement of the Ti electro-oxidation process. Morphological changes during PEO formation of the surface layer include gradual transformation of the original fine grained but porous structure into a dense, fused morphology which is adversely affected by discharge-induced thermal stresses, causing a degradation of the layer adhesion strength.  相似文献   

6.
The coatings mainly composed of nanostructured TiO2 were deposited on Ti6Al4V alloy by microarc oxidation (MAO). The duplex coatings of microarc oxidation combined with spraying graphite process were fabricated for the antifriction purpose. The tribological properties of unpolished, polished and duplex coating against steel under dry friction conditions were examined. It is found that antifriction property of the polished microarc oxidation coating is superior to that of the unpolished one. The improvement is attributed to the low surface roughness and the nanocrystalline structure of coatings. The duplex coating exhibits best antifriction property, registering a lower and steady friction coefficient of ≈0.12 than that of the polished microarc oxidation coating sliding in the similar condition. The good tribological property is attributed to the specially designed duplex structure, the coating adhering strongly to the substrate and serving as the load-supporting underlayer and the graphite layer on top of it working as solid lubricant.  相似文献   

7.
This paper investigates the electronic structure and magnetocrystalline anisotropy of Fe--Ga magnetostrictive material by means of the full potential-linearized augmented plane-wave method within the generalized gradient approximation. The 3d-orbit splitting of Fe atoms in D03, B2-like and L12 crystalline structures of Fe--Ga is calculated with consideration of the crystal field as well as the spin--orbit coupling effect. Because of the frozen orbital angular momenta of the 3d-orbit for Fe atoms in Fe--Ga magnetostrictive alloys and the spin--orbit coupling, the distribution of the electron cloud is not isotropic, which leads to the anisotropy of exchange interaction between the different atoms. A method on estimating the magnetocrystalline anisotropy of Fe--Ga alloys by means of calculating orbit-projected density of states for Fe atoms is performed. The anisotropic distribution of the electron cloud of Fe atoms in these three crystalline structures of Fe--Ga is studied based on the above method showing the highest magnetic anisotropy for B2-like structure. This qualitative method comes closer to physical reality with a vivid physical view, which can evaluate the anisotropy of electron cloud for 3d transition atoms directly. The calculated results are in good agreement with both the previous theoretical computation and the tested value on the magnetic anisotropy constant, which confirms that the electron cloud anisotropy of Fe atoms could well characterize the magnetocrystalline anisotropy of Fe--Ga magnetostrictive material.  相似文献   

8.
Ceramic coatings were formed on Ti6Al4V alloy surface by microarc oxidation (MAO) in a Na2SiO3 system solution. Unlubricated, smear oil and oil bath lubricated fretting tests were performed on MAO coatings against 52100 steel on a fretting wear tester. Microstructural investigation of the worn surfaces was performed and the wear mechanisms were studied. The results show that the coatings are mainly composed of rutile and a small amount of anatase TiO2, both in nano grain structure. Friction coefficient of microarc oxidation coatings under oil bath lubrication was significantly reduced, favorable stable at 0.15, which indicates that the coatings with oil lubricated lowered the shear and adhesive stresses between contact surfaces, consequently alleviating the possibility of initiation and propagation of cracks in the inner layer of the coating or titanium alloy substrate.  相似文献   

9.

Employing an aero-acoustic levitator, the Fe2O3-16.5 mol% La2O3 eutectic alloy was levitated, melted, undercooled and then solidified under a containerless condition when a continuous laser beam heating system was incorporated. By revealing the surface and cross-sectional microstructures, copious nucleation is confirmed to take place in the undercooled melts solidified by either an external seeding or spontaneous crystallization. The nucleation behaviour of eutectic alloys is summarized, indicating that copious nucleation may be an intrinsic attribute of a eutectic system with the exact eutectic composition in unconstrained solidification. Considering the complexity level of crystal structures of eutectic oxide phases in the Fe2O3-La2O3 alloy, the linear kinetic constants are approximately estimated and the growth kinetics are discussed. The sluggish growth kinetics of the perovskite-type phase, that is LaFeO3 with a higher complexity level in a unit cell leads to a decoupled growth within a single eutectic colony when the melt is undercooled to exceed the critical undercooling ΔT = 125 K. It is the decoupled growth that results in the formation of anomalous eutectics. The present concept based on the kinetic constant of different phases can also be applicable to account for the growth behaviour of other oxide eutectics when considering the stable and metastable eutectic reactions in different solidification conditions. The nucleation behaviour and growth modes in some oxide eutectic systems have been predicted in the free solidification from an undercooled state.  相似文献   

10.
Cavity growth in ductile metal materials under dynamic loading is investigated via the material point method. Two typical cavity effects in the region subjected to rarefaction wave are identified: (i) part of material particles flow away from the cavity in comparison to the initial loading velocity, (ii) local regions show weaker negative or even positive pressures. Neighboring cavities interact via coalescence of isobaric contours. The growth of cavity under tension shows staged behaviors. After the initial slow stage, the volume and the dimensions in both the tensile and transverse directions show linear growth rate with time until the global tensile wave arrives at the upper free surface. It is interesting that the growth rate in the transverse direction is faster than that in the tensile direction. The volume growth rate linearly increases with the initial tensile velocity. After the global tensile wave passed the cavity, both the maximum particle velocity in the tensile direction and the maximum particle velocity in the opposite direction increase logarithmically with the initial tensile speed. The shock wave reflected back from the cavity and compression wave from the free surface induce the initial behavior of interfacial instabilities such as the Richtmyer-Meshkov instability, which is mainly responsible for the irregularity in the morphology of deformed cavity. The local temperatures and distribution of hot spots are determined by the plastic work. Compared with the dynamical process, the heat conduction is much slower.  相似文献   

11.
王小怀  陈城钊  冯胜奇  魏心源  李云 《中国物理 B》2017,26(12):127402-127402
Using hybrid-functional first-principles calculation combined with the supercell method and band unfolding technique we investigate the band structure of non-strained Ge_(1-x)Sn_x alloys with various Sn concentrations. The calculations show that at the Sn concentration of ~ 3.1 mol% the Ge Sn alloy presents a direct band gap. The variation of the band structure are ascribed to the weaker electro-negativity of Sn atoms and a slight charge transfer from Sn atoms to Ge atoms.  相似文献   

12.
基于Ginzburg-Landau理论采用连续相场法模拟了Fe-15%Cu-3%Mn-x Al(质量分数x=1%, 3%, 5%)合金在873 K等温时效时纳米富Cu析出相沉淀机制及Al含量对富Cu相析出的阻碍效应.通过计算成分场变量和结构序参数,研究了富Cu析出相的形貌、颗粒密度、平均颗粒半径、生长和粗化动力学.研究结果表明:在时效早期阶段,纳米富Cu相通过失稳分解机制析出,由于原子扩散速率存在差异,从而形成以富Cu相为核心的核壳结构.随着时效时间延长,富Cu相析出物结构由体心立方转变为面心立方.其中Al和Mn原子在富Cu核外偏析形成Al/Mn簇,可以将其视为阻碍富Cu析出相形成的缓冲层;在沉淀过程中,随着Al含量的增大, Al/Mn金属间相促进了缓冲层的生长,阻碍富Cu析出相的生长和粗化.  相似文献   

13.
Porous Si1−xGex (PSiGe) layers with efficient room temperature visible photoluminescence (PL) were elaborated by anodical etching from p-type doped epitaxial layers with Ge contents from 5 to 30%. The luminescence is characterised by a broad PL band centred at 1.8 eV. Time resolved photoluminescence decay is studied in porous silicon germanium as a function of germanium content, temperature, emission energies and surface passivation. The PL decay line shape is well described by a stretched exponential in all cases. The effective lifetime at low temperature in as prepared porous Si1−xGex is 400 μs, i.e. an order of magnitude less than in porous silicon. After the formation of a 20 Å thick oxide surface layer we observe a decrease of the effective lifetime to 20 μs at T=4 K.  相似文献   

14.
Tiancun Hu 《中国物理 B》2022,31(4):47901-047901
Reducing the secondary electron yield (SEY) of Ag-plated aluminum alloy is important for high-power microwave components. In this work, Cu doped carbon films are prepared and the secondary electron emission characteristics are studied systematically. The secondary electron coefficient δmax of carbon films increases with the Cu contents increasing at first, and then decreases to 1.53 at a high doping ratio of 0.645. From the viewpoint of surface structure, the higher the content of Cu is, the rougher the surface is, since more cluster particles appear on the surface due to the small solid solubility of Cu in the amorphous carbon network. However, from viewpoint of the electronic structure, the reduction of the sp2 hybrid bonds will increase the SEY effect as the content of Cu increases, due to the decreasing probability of collision with free electrons. Thus, the two mechanisms would compete and coexist to affect the SEY characteristics in Cu doped carbon films.  相似文献   

15.
The origin of the Slater–Pauling curve Mt=Zt−28 (Here Mt is the total spin moment and Zt is the number of valence electrons) in half-metallic Heusler alloys Mn2CuZ (Z=Ge and Sb) has been studied in detail. In Mn2CuZ the half-metallic gap has a similar origin like half-Heusler alloys. The Cu atom acts as an electron “donator” in Mn2CuZ, which contributes five d-electrons to the minority spin band of Mn2CuZ. So there are 14 valence electrons in the minority band of Mn2CuZ below the Fermi level. This is the origin of the SP curve Mt=Zt–28. Finally, it is found that, by partial doping of Cu to the vacant site of half-metallic half-Heusler alloys, the magnetic moments of these can be tuned without destroying the half-metallicity. This can be a possible way to design new half-metals.  相似文献   

16.
基于超短超强激光的短脉冲中子源是实现超快中子探测的理想中子源。如何提升中子产额是目前短脉冲激光中子源实现应用需求亟需解决的关键问题。提出基于靶背鞘场加速机制和束靶反应方案,采用LiD复合组分靶作为中子转换体,可以有效提升激光中子产额。与常规的LiF转换体相比,除了p-Li和d-Li两个反应道之外,LiD转换体可以多出p-D和d-D两个反应道,因此可充分利用激光加速的质子和氘离子的多反应通道优势来提升中子产生概率。实验结果表明,相比于LiF转换体,LiD转换体可带来中子产额2~3倍的提升,达到5.2×108 n/sr的最高中子产额,并具备更好的前冲性。实验还区分了多反应通道的贡献,证明中子产额提升主要来自于p-D反应。  相似文献   

17.
Using the Embedding Atom Method (EAM) for highly undercooled Ni3Al alloy, the melting point and the specific heat were studied by a molecular dynamics simulation. The simulation of melting point was carried out by means of the sandwich method and the NVE ensemble method, and the results show a good agreement, whereas are larger than the experimental value of 1663 K. This difference is attributed to the influence of surface melting on experimental results, which causes the smaller measurements compared with the thermodynamic melting point. The simulated specific heat of Ni3Al alloy weakly and linearly increases with the increase of undercooling in the temperature range from 800 K to 2000 K. Supported by the National Natural Science Foundation of China (Grant No. 50395101)  相似文献   

18.
利用Tersoff势和分子动力学方法研究了初始动能为500 eV的硼粒子注入金刚石的微观行为.结果表明:硼注入后产生温度为5000 K的热峰,其寿命为0.18 ps;同时产生半径为0.45 nm局部非晶化区域,三重配位原子数占该区域原子数的7%.薄膜表层原子向内弛豫,近表层原子向外弛豫,表面层与近表层原子的间距减少了15%,表面层表现为压应力.硼原子以B<110>分裂间隙的形式存在于金刚石结构中. 关键词: 分子动力学模拟 金刚石 硼 注入  相似文献   

19.
使用Gleeble 1500热力模拟实验系统研究了不同预载水平下的LY12铝合金试件在以不同温升率快速加热过程中的响应与破坏,实验结果不仅表明高温可使处于低应力水平下的试件发生破坏,而且表明在相同预载水平下,温升率越高则试件发生屈服和断裂时的温度就越高。对试件断口附近的金相组织的分析表明:高温升率下材料微观组织结构的热失配造成的材料微观组织的缺陷对试件的破坏过程具有控制作用。  相似文献   

20.
 使用Gleeble 1500热力模拟实验系统研究了不同预载水平下的LY12铝合金试件在以不同温升率快速加热过程中的响应与破坏,实验结果不仅表明高温可使处于低应力水平下的试件发生破坏,而且表明在相同预载水平下,温升率越高则试件发生屈服和断裂时的温度就越高。对试件断口附近的金相组织的分析表明:高温升率下材料微观组织结构的热失配造成的材料微观组织的缺陷对试件的破坏过程具有控制作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号