首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Reactions of [ReX2(η 2-N2COPh-N′,O)(PPh3)2] with 3-methylbenzonitrile give two iso-structural complexes, [ReX2(N2COPh)(CH3PhCN)(PPh3)2] (X?=?Cl, Br). The crystal and molecular structures of [ReCl2(N2COPh)(CH3PhCN)(PPh3)2] (1) and [ReBr2(N2COPh)(CH3PhCN)(PPh3)2]?·?CH2Cl2 (2) were determined. The electronic structures were examined with density functional theory (DFT). The spin-allowed electronic transitions were calculated with the time-dependent DFT method, and the UV-Vis spectrum has been discussed.  相似文献   

2.
The betain like carbodiphosphorane CO2 adduct O2CC(PPh3)2 ( 1a ) can serve as a ligand versus hard Lewis acids from main group compounds. Thus, reaction of 1a with InCl3, InI3 and SnCl2 in polar solvents leads to the addition compounds [Cl3In{O2CC(PPh3)2}] ( 2 ), [Cl2SnO2CC(PPh3)2}] ( 3 ) and the salt like compound [I2In{O2CC(PPh3)2}2]I ( 4 ) in good yields. Whereas in the indium compounds 1a acts as a chelating ligand, in the tin compound the molecule coordinates with one oxygen atom only as a monodentate ligand. 4 has a pyramidal structure with a stereochemical active pair of electrons. All compounds could be characterized by X‐ray analyses and the usual spectroscopic methods.  相似文献   

3.
鉴于含硅-过渡金属键化合物作为催化剂具有重要的应用价值, 在我们最近发现的化合物(η5,η5-C5H4Me2SiSi-Me2C5H4)Fe2(CO)4 (1)的硅硅键和铁铁键复分解重排反应可以有效地合成含有两个硅铁键的环状化合物[Me2Si-η5-C5H4- Fe(CO)2]2 (2)的基础上, 对该硅铁键环状化合物的三苯基膦取代衍生物[Me2Si-η5-C5H4-Fe(CO)(PPh3)][Me2Si-η5-C5H4Fe(CO)2-n(PPh3)n] (3: n=0, 5: n=1)的合成方法进行了研究. 发现化合物1在三苯基膦存在下的复分解重排反应是合成单三苯基膦取代产物3的最好方法; 而双三苯基膦取代化合物5则可通过光照条件下2与三苯基膦发生羰基取代反应而得到, 产物中含有的顺反异构体可利用制备薄层色谱法分离. 利用X射线衍射法测定了化合物3的分子结构, 考察了三苯基膦配体的存在对分子结构的影响以及三苯基膦与铁形成的配位键的稳定性.  相似文献   

4.
0IntroductionTheincreasingcommercialvalueoftransitionmetalcomplexesofxanthateshasarousedconsiderableinterestingintheirchemistry.Whiletheiranalyticalapplicationsarewellknown犤1犦,theyarenowfindingextensiveuseinvulcanizationofrubber,frothfloatationprocessforconcentrationofsulphideores,asantioxi-dants,lubricants犤2,3犦,andhavebeenfoundtopossessfungicidalandinsecticidalactivity犤4犦.Inrecentyears,therehasbeengrowinginterestinthestudyofd10metalcomplexes,whichexhibitrichphotophysicalandpho-tochemica…  相似文献   

5.
The reactions of equimolar amounts of trans-[ReOC13(PPh3)2] or trans-[Re(NPh)(PPh3)2Cl3] with a Schiff base formed by condensation of 2-hydroxy-4-methoxybenzaldehyde and ethanolamine (H2L) result in the formation of cis-[ReO(HL)PPh3Cl2] (1a) and trans-[Re(NPh)(HL)(PPh3)Cl2] (2b), respectively, in good yields. 1a and 2b have been characterized by a range of spectroscopic and analytical techniques. The X-ray crystal structures of 1a and 2b reveal that 1a is an octahedral cis-Cl,Cl oxorhenium(V) complex, while 2b is a trans-Cl,Cl phenylimidorhenium(V) complex. The complexes are weakly emissive at room temperature with quantum yields of 10?4. Density functional theory calculations of the electronic properties of the complexes were performed and are in agreement with the experimental results. The complexes display quasi-reversible Re(V)/Re(VI) redox couples in acetonitrile. There is reasonable agreement between the experimental and calculated redox potentials of 1a and 2b.  相似文献   

6.
Preparation and Crystal Structures of Ag[N(CN)2](PPh3)2, Cu[N(CN)2](PPh3)2, and Ag[N(CN)2](PPh3)3 The coordination compounds Ag[N(CN)2](PPh3)2 ( 1 ), Cu[N(CN)2](PPh3)2 ( 2 ), and Ag[N(CN)2](PPh3)3 ( 3 ) are obtained by the reaction of AgN(CN)2 or CuN(CN)2 with triphenylphosphane in CH2Cl2. X‐ray structure determinations were performed on single crystals of 1 , 2 , and 3 · C6H5Cl. The three compounds crystallize monoclinic in the space group P21/n with the following unit cell parameters. 1 : a = 1216.07(9), b = 1299.5(2), c = 2148.4(3) pm, β = 99.689(13)°, Z = 4; 2 : a = 1369.22(10), b = 1257.29(5), c = 1888.04(15) pm, β = 94.395(7)°, Z = 4; 3 · C6H5Cl: a = 1276.6(4), b = 1971.7(3), c = 2141.3(5) pm, β = 98.50(3)°, Z = 4. In all structures the metal atoms have a distorted tetrahedral coordination. The crystal structure of 3 · C6H5Cl shows monomeric molecular units with terminal coordinated dicyanamide. The crystal structure of 1 is built up by dinuclear units, which are bridged by dicyanamide ligands. However, the crystal structure of 2 corresponds to a onedimensional coordination polymer, bridged by dicyanamide anions.  相似文献   

7.
Treatment of [RuCl2(PPh3)3] with 2 equiv. HimtMPh (HimtMPh?=?1-(4-methyl-phenyl)-imidazole-2-thione) in the presence of MeONa afforded cis-[Ru(κ 2-S,N-imtMPh)2(PPh3)2] (1), while interaction of [RuCl2(PPh3)3] and 2 equiv. HimtMPh in tetrahydrofuran (THF) without base gave [RuCl2(κ 1-S-HimtMPh)2(PPh3)2] (2). Treatment of [RuHCl(CO)(PPh3)3] with 1 equiv. HimtMPh in THF gave [RuHCl(κ 1-S-HimtMPh)(CO)(PPh3)2] (3), whereas reaction of [RuHCl(CO)(PPh3)3] with 1 equiv. of the deprotonated [imtMPh]? or [imtNPh]? (imtNPh?=?1-(4-nitro-phenyl)-2-mercaptoimidazolyl) gave [RuH(κ 2-S,N-imtRPh)(CO)(PPh3)2] (R?=?M 4a, R?=?N 4b). The ruthenium hydride complexes 4a and 4b easily convert to their corresponding ruthenium chloride complexes [RuCl(κ 2-S,N-imtMPh)(CO)(PPh3)2] (5a) and [RuCl(κ 2-S,N-imtNPh)(CO)(PPh3)2] (5b), respectively, in refluxing CHCl3 by chloride substitution of the RuH. Photolysis of 5a in CHCl3 at room temperature afforded an oxidized product [RuCl2(κ 2-S,N-imtMPh)(PPh3)2] (6). Reaction of 6 with excess [imtMPh]? afforded 1. The molecular structures of 1·EtOH, 3·C6H14, 4b·0.25CH3COCH3, and 6·2CH2Cl2 have been determined by single-crystal X-ray crystallography.  相似文献   

8.
The betain‐like compound S2CC(PPh3)2 ( 1 ), which is obtained from CS2 and the double ylide C(PPh3)2, reacts with [Co2(CO)8] and [Mn2(CO)10] in THF to afford the salt‐like complexes [Co{S2CC(PPh3)2}3][Co(CO)4]3 ( 2 ) and [(CO)4Mn{S2CC(PPh3)2}][Mn(CO)5] ( 3 ), respectively, in good yields. At both d6 cations 1 acts as a chelating ligand. Disproportionation reactions from formal Co0 into CoIII and Co?I and from Mn0 into MnI and Mn?I occurred with the removal of four or one carbonyl groups, respectively. The crystal structures of 2· 5.5THF and 3· 2THF are reported, which show a shortening of the C–C bond in the ligand upon complex formation. The compounds are further characterized by 31P NMR and IR spectroscopy.  相似文献   

9.
[(n‐Bu)2Sn(O2PPh2)2] ( 1 ), and [Ph2Sn(O2PPh2)2] ( 2 ) have been synthesized by the reactions of R2SnCl2 (R=n‐Bu, Ph) with HO2PPh2 in Methanol. From the reaction of Ph2SnCl2 with diphenylphosphinic acid a third product [PhClSn(O2PPh2)OMe]2 ( 3 ) could be isolated. X‐ray diffraction studies show 1 to crystallize in the monoclinic space group P21/c with a = 1303.7(1) pm, b = 2286.9(2) pm, c = 1063.1(1) pm, β = 94.383(6)°, and Z = 4. 2 crystallizes triclinic in the space group , the cell parameters being a = 1293.2(2) pm, b = 1478.5(4) pm, c = 1507.2(3) pm, α = 98.86(3)°, β = 109.63(2)°, γ = 114.88(2)°, and Z = 2. Both compounds form arrays of eight‐membered rings (SnOPO)2 linked at the tin atoms to form chains of infinite length. The dimer 3 consists of a like ring, in which the tin atoms are bridged by methoxo groups. It crystallizes triclinic in space group with a = 946.4(1) pm, b = 963.7(1) pm, c = 1174.2(1) pm, α = 82.495(6)°, β = 66.451(6)°, γ = 74.922(6)°, and Z = 1 for the dimer. The Raman spectra of 2 and 3 are given and discussed.  相似文献   

10.
[ReBr2(O)(OCH3)(PPh3)2] has been obtained in the reaction of [ReBr3O(PPh3)2] or [ReBr22-N2COPh-N′,O)(PPh3)2] with an excess of methanol. [ReBr2O(OMe)(PPh3)2] crystallizes in the triclinic space group P-1. The complex was characterized by infrared, UV-Vis, and 1H NMR spectra. The electronic structure of the obtained compound has been calculated using the DFT/TD–DFT method.  相似文献   

11.
The carbodiphosphorane CO2 adduct O2CC(PPh3)2 ( 1a ) reacts with [(CO)5W(THF)] and [(CO)3W(NCEt)3] to produce the complexes [(CO)5W{η1‐O2CC(PPh3)2}] ( 2 ) and [(CO)4W{η2‐O2CC(PPh3)2}] ( 3 ), respectively. Whereas in 2 the betain‐like ligand is coordinated at the tungsten atom in a monodentate manner, in 3 it acts as a chelating ligand with formation of a WO2C four‐membered ring. As a by‐product during the reaction with the acetonitrile adduct also some crystals of the hydrolysis product [HC(PPh3)2]2[W6O19] · 3C2H4Cl2 (4 · 3C2H4Cl2) were isolated. All compounds could be characterized by X‐ray analyses and the usual spectroscopic methods.  相似文献   

12.
New mixed-ligand copper(I) complexes, [Cu(Phca2en)(PPh3)X], [Phca2en = N,N′-bis(β-phenylci-nnamaldehyde)-1,2-diiminoethane and X=Cl (1), Br (2), I (3), NCS (4), N3 (5)] have been synthesized and characterized by various techniques. 1H and 13C-NMR and IR spectral data of these copper(I) complexes are compared with the free ligand to elucidate some structural features. The structures of [Cu(Phca2en)(PPh3)Br] (2) and [Cu(Phca2en)(PPh3)I] (3) have been determined from single-crystal data showing that the coordination geometry around copper atom is a distorted tetrahedron. Furthermore, these Cu(I) complexes exhibit supramolecular motifs of the type multiple phenyl embraces resulting from attractive interactions between phenyl rings of PPh3 moieties. The presence of the C–H…Cu weak intramolecular hydrogen bonds, due to the trapping of C–H bonds in the vicinity of the metal atoms, is also reported.  相似文献   

13.
The carbodiphosphorane C(PPh3)2 ( 1 ) reacts with [Mn2(CO)10] in THF to produce quantitatively the salt‐like complex (HC{PPh3}2)[Mn(CO)5] ( 2 ) as THF solvate. If the reaction is carried out in 1,2‐dimethoxyethane (DME) small amounts of [Mn(OPPh3)2{O2CC(PPh3)2}2][Mn(CO)5]2 ( 3 ) as DME solvate along with solvent free 2 as the main product were isolated. Proton abstraction from the solvent led to the formation of 2 ; the ligands OPPh3 and O2CC(PPh3)2}2 of 3 are the results of a side reaction from [Mn2(CO)10] and 1 in a Wittig type manner. From the reaction in benzene small amounts of 3 were also obtained, crystallizing as benzene solvate 3· 4C6H6. The crystal structures of 2· THF, 2 , 3· 1.75DME and 3· 4C6H6 are reported. The compounds are further characterized by IR and 31P NMR spectroscopy.  相似文献   

14.
The binary zirconium and hafnium polyazides [PPh4]2[M(N3)6] (M=Zr, Hf) were obtained in near quantitative yields from the corresponding metal fluorides MF4 by fluoride–azide exchange reactions with Me3SiN3 in the presence of two equivalents of [PPh4][N3]. The novel polyazido compounds were characterized by their vibrational spectra and their X‐ray crystal structures. Both anion structures provide experimental evidence for near‐linear M‐N‐N coordination of metal azides. The species [M(N3)4], [M(N3)5]? and [M(N3)6]2? (M=Ti, Zr, Hf) were studied by quantum chemical calculations at the electronic structure density functional theory and MP2 levels.  相似文献   

15.
The carbodiphosphorane CO2 adduct ( 2 ) reacts slowly with 1, 2‐dichloroethane to give (HC{PPh3}2)Cl ( 5 ) as result of HCl abstraction along with the ester‐like salt (ClCH2CH2O(O)CC{PPh3}2)Cl ( 4 ) from nucleophilic substitution of one Cl by 2 . Both compounds could be separated by fractional crystallization. Attempts to dissolve 2 in 1, 2‐difluorobenzene leads to small amounts of the hydrolysis product (HC{PPh3}2)(HCO3) · H2O ( 6· H2O) caused by some humidity in the solvent. All compounds could be crystallized and the structures studied by X‐ray analyses and 31P NMR spectroscopy.  相似文献   

16.
According to the protonation of [PPh4]2[Ru6C(CO)16] (1b) withp-toluene-sulfonic acid, a hydrido ruthenium cluster [PPh4][Ru6C(CO)16H] (3b) was obtained in 53% yield, which readily decomposed in protic solvents even at –20°C to yield1b, Ru6C(CO)16H2, and Ru5C(CO)15. Cluster3b was characterized by single-crystal X-ray analysis. The six metal atoms are arranged in the form of an octahedron with the carbido ligand located in the center. There are 13 terminal carbonyl, three bridging carbonyl, and a bridging hydrido ligands.  相似文献   

17.
The reaction of Os3(μ-Cl)2(CO)10 (1) with Ph2PCH2PPh2 (dppm) in a toluene solution at 65°C results in novel osmium complexes [Os3(μ-Cl)2(CO)9]2(dppm) (2) and [Os3(μ-Cl)2(CO)8]2(dppm)2 (3). Compounds 2 and 3 were characterized by1H and31P NMR, and IR spectroscopy and their structures were established by X-ray analysis. In both compounds, dppm is a bridging ligand between the two cluster units. Molecule3 can be considered as an unusual 12-membered macrocycle containing C, P, Cl, and Os atoms in the ring. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1844–1851, September, 1998.  相似文献   

18.
Reactions of Uranium Pentabromide. Crystal Structures of PPh4[UBr6], PPh4[UBr6] · 2CCl4, (PPh4)2[UBr6] · 4CH3CN, and (PPh4)2[UO2Br4] · 2CH2Cl2 PPh4[UBr6] and PPh4[UBr6] · 2CCl4 were obtained from UBr5 · CH3CN and tetraphenylphosphonium bromide in dichloromethane, the latter being precipitated by CCl4. Their crystal structures were determined by X-ray diffraction. PPh4[UBr6]: 2101 observed reflexions, R = 0.090, space group C2/c, Z = 4, a = 2315.5, b = 695.0, c = 1805.2 pm, β = 96.38°. PPh4[UBr6] · 2CCl4: 2973 reflexions, R = 0.074, space group P21/c, Z = 4, a = 1111.5, b = 2114.2, c = 1718.7 pm, β = 95.42°. Hydrogen sulfide reduces uranium pentabromide to uranium tetrabromide. Upon evaporation, bromide is evolved from solutions of UBr5 with 1 or more then 3 mol equivalents of acetonitrile in dichlormethane yielding UBr4 · CH3CN and UBr4 · 3CH3CN, respectively. These react with PPh4Br in acetonitrile affording (PPh4)2[UBr6] · 4CH3CN, the crystal structure of which was determined: 2663 reflexions, R = 0.050, space group P21/c, Z = 2, a = 981.8, b = 2010.1, c = 1549.3 pm, β = 98.79°. By reduction of uranium pentabromide with tetraethylammonium hydrogen sulfide in dichloromethane (NEt4)2[U2Br10] was obtained; (PPh4)2[U2Br10] formed from UBr4 and PPh4Br in CH2Cl2. Both compounds are extremely sensitive towards moisture and oxygen. The crystal structure of the oxydation product of the latter compound, (PPh4)2[U02Br4]· 2 CH2Cl2, was determined: 2163 reflexions, R = 0.083, space group C2/c, Z = 4, a = 2006.3, b = 1320.6, c = 2042,5 pm, β = 98.78°. Mean values for the UBr bond lengths in the octahedral anions are 266.2 pm for UBr6-, 276.7 pm for UBr62? and 282.5 pm for UO2Br42?  相似文献   

19.
We studied the reactivity of an osmium vinyl complex containing a coordinated hydroxyl group OsCl2(PPh3)2[CH=C(PPh3)CHPh(OH)] (1) toward bidentate ligand 1,4-bis(diphenylphosphino)butane (DPPB),acid ligand (CO),base (Cs2CO3) and heat.Two osmium vinyl complexes OsCl2(dppb)[CH=C(PPh3)CHPh(OH)](2) and OsCl2(CO)2(PPh3)[CH=C(PPh 3)CHPh(OH)] (3),as well as two relatively rare phosphonium-containing osmafuran complexes Os(2-OCOO)(PPh3)2[CHC(PPh3)CPhO](4) and OsCl2 (PPh3)2[CHC(PPh3)CPhO](5),were obtained in high yields from these reactions.All products were characterized by NMR spectroscopy,elemental analysis,and their structures were further confirmed by single crystal X-ray diffraction.  相似文献   

20.
The reaction of Na2[Fe(CO)4] with Br2CF2 in n‐pentane generates a mixture of the compounds (CO)3Fe(μ‐CO)3–n(μ‐CF2)nFe(CO)3 ( 2 , n = 2; 3 , n = 1) in low yields with 3 as the main product. 3 is obtained free from 2 by reacting Br2CF2 with Na2[Fe2(CO)8]. The non‐isolable monomeric complex (CO)4Fe=CF2 ( 1 ) can probably considered as the precursor for 2 . 3 reacts with PPh3 with replacement of two CO ligands to form Fe2(CO)6(μ‐CF2)(PPh3)2 ( 4 ). The complexes 2 – 4 were characterized by single crystal X‐ray diffraction. While the structure of 2 is strictly similar to that of Fe2(CO)9, the structure of 3 can better be described as a resulting from superposition of the two enantiomers 3 a and 3 b with two semibridging CO groups. Quantum chemical DFT calculations for the series (CO)3Fe(μCO)3–n(μ‐CF2)nFe(CO)3 (n = 0, 1, 2, 3) as well as for the corresponding (μ‐CH2) derivatives indicate that the progressively larger σ donor and π acceptor properties for the bridging ligands, in the order CO < CF2 < CH2, favor a stronger Fe–Fe bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号