首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
Silicon dioxide (SiO2) thick films have been deposited by plasma enhanced chemical vapor deposition (PECVD) and flame hydrolysis deposition (FHD). PECVD SiO2 films were obtained at low temperatures (<350 °C) by the decomposition of the appropriate mixture of (SiH4+N2O) gases under suitable rf power and N2O/SiH4 ratio. For low N2O/SiH4 ratio, a refractive index(n) value close to 1.50 is obtained. The deposition rate increased with the increase of rf power. FHD SiO2 films were produced by the flame hydrolysis reaction of halide materials such as SiCl4, POCl3 and BCl3 in an oxy‐hydrogen torch. The porous SiO2 layer, under the POCl3/BCl3 ratio deposition condition, has to be consolidated by annealing at around 1300 °C.  相似文献   

2.
采用等离子体增强化学气相沉积法,以SiH4、NH3和N2为反应气源,通过改变射频功率制备富硅-氮化硅薄膜材料.利用傅里叶变换红外吸收光谱,紫外-可见光透射光谱,扫描电镜等对薄膜材料结构与性质进行表征.实验表明,随着射频功率的逐渐增加,薄膜光学带隙缓慢减小、有序度增加,薄膜材料中的Si-H键、N-H键缓慢减小,Si-N键增多.分析结果发现,适量的增加射频功率有利于提高样品反应速率,使薄膜有序度增加,致密性增强,提高薄膜质量,但过高的射频功率会使薄膜质量变差.  相似文献   

3.
Multi‐walled carbon nanotube arrays (MWCNTAs) were grown by thermal chemical vapor deposition (TCVD) in a horizontal furnace reactor. The scanning electron microscopy (SEM) results show that MWCNTAs grown on the bottom and the central of the quartz tube are different in one experiment. Moreover, the MWCNTAs grown on the central position are more aligned and longer than those on the bottom. A computational fluid dynamics (CFD) model was employed to investigate the gas flow field impact on the MWCNTAs growth. The results show that gas circulations appear after carrier gas and carbon source are injected into the quartz tube. Because of the existence of gas circulations, the gas flow field at the central of the quartz tube is more stable, which is conducive to the growth of MWCNTAs. The CFD simulation results match well with the experimental data.  相似文献   

4.
氩气对直流弧光放电PCVD金刚石薄膜晶体特征的影响   总被引:1,自引:0,他引:1  
本文采用自主研制的直流弧光放电等离子体CVD设备,在YG6硬质合金基体上进行了不同氩气流量下金刚石薄膜的制备研究.采用SEM对金刚石薄膜的晶体特征进行了观察.结果表明,氩气对直流弧光放电等离子体CVD金刚石薄膜的晶体特征有明显影响.在CH_4/H_2恒定时(0.8;),硬质合金基体上制备的金刚石薄膜表面形貌随Ar流量增加而变化的规律,即从以(111)八面体晶面为主→(111)和(100)立方八面体混杂晶面→以(100)立方体晶面为主→菜花状的顺序转变;当Ar流量为420~700 mL/min时,金刚石晶粒的平均尺寸由1.5 μm 逐步增大到7 μm;Ar流量为700~910 mL/min时,金刚石晶粒的平均尺寸由7 μm急剧减小到纳米尺度,约50 nm.  相似文献   

5.
Cuprous oxide (Cu2O) thin films were grown epitaxially on c-axis-oriented polycrystalline zinc oxide (ZnO) thin films by low-pressure metal organic chemical vapor deposition (MOCVD) from Copper(II) hexafluoroacetylacetonate [Cu(C5HF6O2)2] at various substrate temperatures, between 250 and 400 °C, and pressures, between 0.6 and 2.1 Torr. Polycrystalline thin films of Cu2O grow as single phase with [1 1 0] axis aligned perpendicular to the ZnO surface and with in-plane rotational alignment due to (2 2 0)Cu2O(0 0 0 2)ZnO; [0 0 1]Cu2O[1 2¯ 1 0]ZnO epitaxy. The resulting interface is rectifying and may be suitable for oxide-based p–n junction solar cells or diodes.  相似文献   

6.
Thin films of tin selenide (SnSe) were deposited on sodalime glass substrates, which were held at different temperatures in the range of 350‐550 K, from the pulverized compound material using thermal evaporation method. The effect of substrate temperature (Ts) on the structural, morphological, optical, and electrical properties of the films were investigated using x‐ray diffraction analysis (XRD), scanning electron microscopy (SEM), transmission measurements, and Hall‐effect characterization techniques. The temperature dependence of the resistance of the films was also studied in the temperature range of 80‐330 K. The XRD spectra and the SEM image analyses suggest that the polycrystalline thin films having uniform distribution of grains along the (111) diffraction plane was obtained at all Ts. With the increase of Ts the intensity of the diffraction peaks increased and well‐resolved peaks at 550 K, substrate temperature, were obtained. The analysis of the data of the optical transmission spectra suggests that the films had energy band gap in the range of 1.38‐1.18 eV. Hall‐effect measurements revealed the resistivity of films in the range 112‐20 Ω cm for films deposited at different Ts. The activation energy for films deposited at different Ts was in the range of 0.14 eV‐0.28 eV as derived from the analysis of the data of low‐temperature resistivity measurements. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
A series of ZnO films were grown on GaAs(0 0 1) substrates at different growth temperatures in the range 250–720°C by metalorganic chemical vapor depostion. Field emission scanning electron microscopy was utilized to investigate the surface morphology of ZnO films. The crystallinity of ZnO films was investigated by the double-crystal X-ray diffractometry. The optical and electrical properties of ZnO films were also investigated using room-temperature photoluminescence and Hall measurements. Arrhenius plots of the growth rate versus reciprocal temperature revealed the kinetically limited growth behavior depending on the growth temperature. It was found that the surface morphology, structural, optical and electrical properties of the films were improved with increasing growth temperature to 650°C. All the properties of the film grown at 720°C were degraded due to the decomposition of ZnO film.  相似文献   

8.
High-quality ZnO thin films have been grown on a Si(1 0 0) substrate by plasma-enhanced chemical vapor deposition (PECVD) using a zinc organic source (Zn(C2H5)2) and carbon dioxide (CO2) gas mixtures at a temperature of 180°C. A strong free exciton emission with a weak defect-band emission in the visible region is observed. The characteristics of photoluminescence (PL) of ZnO, as well as the exciton absorption peak in the absorption spectra, are closely related to the gas flow rate ratio of Zn(C2H5)2 to CO2. Full-widths at half-maximum of the free exciton emission as narrow as 93.4 meV have been achieved. Based on the temperature dependence of the PL spectra from 83 to 383 K, the exciton binding energy and the transition energy of free excitons at 0 K were estimated to be 59.4 meV and 3.36 eV, respectively.  相似文献   

9.
The effect of the N/Al ratio of AlN buffers on the optical and crystal quality of GaN films, grown by metalorganic chemical vapor deposition on Si(1 1 1) substrates, has been investigated. By optimizing the N/Al ratio during the AlN buffer, the threading dislocation density and the tensile stress have been decreased. High-resolution X-ray diffraction exhibited a (0 0 0 2) full-width at half-maximum as low as 396 acrsec. The variations of the tensile stress existing in the GaN films were approved by the redshifts of the donor bound exiton peaks in the low-temperature photoluminescence measurement at 77 K.  相似文献   

10.
无镉材料Zn(O,S)因其带隙宽且可调节、无毒无害等优点被作为缓冲层材料重点研究,通过化学水浴法制备Zn(O,S)薄膜,研究了沉积时间的不同(20~35 min)对Zn(O,S)薄膜的成分、结构特性、光学性能及形貌的影响.通过XRD测试可知,水浴法制备的Zn(O,S)薄膜为非晶态.通过透反射谱测试可知,薄膜的光学透过率较高(>80;).通过表面形貌测试可知,30 min时Zn(O,S)薄膜为致密均匀的小颗粒.将Zn(O,S)薄膜应用在CZTSe电池中,在30 min时获得较高器件转换效率5.37;.  相似文献   

11.
SnO2 films have been deposited on Y-stabilized ZrO2 (YSZ) (1 0 0) substrates at different substrate temperatures (500–800 °C) by metalorganic chemical vapor deposition (MOCVD). Structural, electrical and optical properties of the films have been investigated. The films deposited at 500 and 600 °C are epitaxial SnO2 films with orthorhombic columbite structure, and the HRTEM analysis shows a clear epitaxial relationship of columbite SnO2(1 0 0)||YSZ(1 0 0). The films deposited at 700 and 800 °C have mixed-phase structures of rutile and columbite SnO2. The carrier concentration of the films is in the range from 1.15×1019 to 2.68×1019 cm−3, and the resistivity is from 2.48×10−2 to 1.16×10−2 Ω cm. The absolute average transmittance of the films in the visible range exceeds 90%. The band gap of the obtained SnO2 films is about 3.75–3.87 eV.  相似文献   

12.
The influence of Al pre-deposition on the properties of AlN buffer layer and GaN layer grown on Si (1 1 1) substrate by metalorganic chemical vapor deposition (MOCVD) has been systematically studied. Compared with the sample without Al pre-deposition, optimum Al pre-deposition time could improve the AlN buffer layer crystal quality and reduce the root mean square (RMS) roughness. Whereas, overlong Al-deposition time deteriorated the AlN crystal quality and Al-deposition patterns could be found. Cracks and melt-back etching patterns appeared in the GaN layer grown without Al pre-deposition. With suitable Al-deposition time, crack-free 2.0 μm GaN was obtained and the full-width at half-maximum (FWHM) of (0 0 2) plane measured by double crystal X-ray diffraction (DCXRD) was as low as 482 arcsec. However, overlong Al-deposition time would result in a great deal of cracks, and the crystal quality of GaN layer deteriorated. The surface of GaN layer became rough in the region where the Al-deposition patterns were formed due to overlong Al-deposition time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号