首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A novel spirooxazine (SO) compound was designed and synthesized. Macromolecular materials, called SO-g-hPMMAs (where the g means grafting and the h means partial hydrolysis), were prepared using PMMA (polymethylmethacrylate) with different degrees of hydrolysis. SO-g-5%hPMMA was prepared by reacting SO-containing active C-Br bonds with 5% partially hydrolyzed PMMA. The SO was characterized using 1H NMR and infrared. Beyond that, photochromic properties were studied in detail. We discuss the effects of hydrochloric acids and hPMMAs of different hydrolysis degrees on photochromic properties of SO-g-hPMMA. Additionally, mechanical properties of the material were studied. Results indicate that the colored ring-opening form (PMC) of SO-g-hPMMA exhibits a good performance in terms of thermal stability, in contrast to the homologous SO. Experiments additionally demonstrate that hydrochloric acid improves the PMC’s thermal stability. SO-g-9%hPMMA demonstrated a good performance of photochromic properties compared to those with different degrees of hydrolysis.  相似文献   

2.
The dynamic mechanical and thermal properties of natural rubber/poly (methyl methacrylate) blends (NR/PMMA) with and without the addition of graft copolymer (NR‐g‐PMMA) have been investigated. Dynamic mechanical spectroscopy is used to examine the effect of compatibilizer loading on storage modulus (E′), loss modulus (E″) and loss tangent (tan δ) at different temperatures and at different frequencies. The morphology of the blends indicates that the size of the dispersed phase decreased by the addition of a few percent of the graft copolymer followed by a leveling off at higher concentrations. This is an indication of interfacial saturation. Attempts have been made to correlate morphology with dynamic mechanical properties. Various models have been used to fit the experimental viscoelastic results. Differential scanning calorimetry has been used to analyze the glass‐transition temperatures of the blends. The thermal stability of the blends has been analyzed by thermogravimetry. Compatibilized blends are found to be more thermally stable than uncompatibilized blends. Finally the miscibility and mechanical properties of the blends annealed above Tg are evaluated. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 525–536, 2000  相似文献   

3.
There is of great interest in promotion of anti-thermal aging properties of natural rubber (NR) to improve the applicability. In this study, two novel Schiff base antioxidants (SBAOs) for NR were synthesized utilizing 4-aminodiphenylamine with 3,5-Di-tert-butyl-2-hydroxybenzaldehyde or cinnamic aldehyde in an ethanol medium. IR, 13C-NMR, and 1H-NMR confirmed the structures of SBAOs. Addition of SBAOs improved the rheometric properties, mechanical properties and thermal oxidative stability of NR vulcanizates. Introduction of SBAOs in NR increased the apparent activation energy of thermal oxidative degradation according to Kissinger and FWO methods. Anti-thermal aging performance of SBAOs for NR is related to the structures. The C=N double bonds in SBAOs improve the electron density of Ar–OH and/or Ar–NH–Ar structures, benefiting the release of active hydrogen. The active hydrogen could capture free radicals initiated during the thermal oxidative aging process. The lone pair electrons on nitrogen atom are also beneficial to delay or terminate free radical reaction. NR with SBAOs showed high mechanical properties of the tensile strength, tensile stress at 100% elongation and Shore A hardness compared to commercial BHT and 4010 during aging 96 h. It indicates potential applications of SBAOs as efficient antioxidants for NR.  相似文献   

4.
The effects of methyl methacrylate (MMA) grafting and in situ formation of silica particles on the morphology and mechanical properties of natural rubber latex (NRL) were investigated. MMA grafting on NRL was carried out using cumyl hydroxy peroxide/tetraethylene pentamine (CHPO/TEPA) as a redox initiator couple. The grafting efficiency of the grafted NR was determined by solvent extractions and the grafted NRL was then mixed with tetraethoxysilane (TEOS), a precursor of silica, coated by adherence to a glass surface to form a film and cured at 80°C. The resultant products were characterized by FT‐IR and transmission electron microscopy. The influence of varying the MMA monomer weight ratio on the surface morphology of the composites was investigated by scanning electron and atomic force microscopy. The PMMA (poly MMA) grafted NRL particles were obtained as a core/shell structure from which the NR particles were the core seed and PMMA was a shell layer. The silane was converted into silica particles by a sol–gel process which was induced during film drying at 80°C. The silica particles were fairly evenly distributed in the ungrafted NR matrix but were agglomerated in the grafted NR matrix. The root‐mean‐square roughness increased with an increasing weight ratio of MMA in the rubber. The in situ silica particles in the grafted NR matrix slightly increased both the modulus and the tear strength of the composite film. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.

The graft copolymerization of methyl methacrylate (MMA) onto commercial acrylic fibers (PAN) has been studied using Azobis(isobutyro)nitrile (AIBN) as an initiator. MMA grafting initiated by radicals formed from thermal decomposition of AIBN. In this study, the effects of monomer and initiator concentration, time and temperature reaction on the grafting yield have been investigated.

The optimum conditions for this grafting reaction were obtained with an MMA concentration of 0.7 M, an AIBN concentration of 0.0073 M, a reaction temperature of T=85°C and with a 60 min reaction time.

The fiber structure has been investigated by different experimental techniques of characterization such as Fourier transform infrared spectroscopy (FT‐IR), calorimetric analysis (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), water absorption and the physical and mechanical properties has also been investigated in this study. The thermal analysis data showed that by increasing grafting yield, little changes have occurred in fibers samples up to 13.5% of grafting yield and the thermal transitions of grafted fibers have approximately the same behavior compared with the raw fibers sample. Grafting also slightly affected the fiber morphology. The experimental data of mechanical properties clearly show that by increasing grafting yield, max extension will decrease but this change up to 13.5% grafting yield is barely noticeable. Grafting of poly MMA improved water absorption.  相似文献   

6.
To investigate the dispersion and nanofillers' interaction of rod‐like silicates (attapulgite, ATT) in the polymethylmethacrylate (PMMA) matrix, a novel in situ modification of ATT by toluene‐2,4‐di‐isocyanate (TDI) using mechanical mixing was exploited, which resulted in homogeneous dispersion and rod‐like texture of ATT nanorods. As a consequence, organo‐modified ATT/PMMA nanocomposites were prepared, which provided prominent improvements in strength, toughness, and thermal stability. High grafting efficiency of TDI on ATT surface was confirmed by FTIR spectra and SEM observations. The uniform dispersion of in situ TDI modified ATT nanorods in the PMMA which was clearly visible in the TEM micrographs, influenced the mechanical and thermal properties of the nanocomposites. The fibrous nanoparticles significantly confined the segmental motion, causing a 13.20°C increase in the glass transition temperature of 2 wt% in situ TDI modified ATT/PMMA nanocomposites. But at higher loadings little or no differences were observed for the reinforcement benefits provided by the in situ TDI modified ATT clay. By comparison, pre‐treated ATT clay severely fractured during mechanical mixing and showed little reinforcement benefits. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
The physical properties of radiation, sulfur and peroxide-cured styrene–butadiene rubber (SBR) and natural rubber (NR) were compared. The dependence of the mechanical properties of the radiation-vulcanized SBR and NR on the coagent concentration and radiation dose was studied. The effect of thermal aging on the mechanical properties of the different rubber formulations was discussed. The radiation-cured formulations of SBR have superior mechanical properties and thermal stability compared with those of the chemically vulcanized compounds. Whereas, the radiation-cured formulations of NR have similar mechanical properties but superior thermal stability (based on the % change in E after thermal aging), when compared with those of the sulfur-vulcanized compounds and slightly better than those of the peroxide-vulcanized compounds.  相似文献   

8.
Polyethyleneterephthalate (PET) based proton exchange membrane for using in fuel cells was successfully prepared by gamma radiation-induced graft copolymerization of styrene monomer onto PET film and the consequent selective sulfonation of the grafting chain in the film state using chlorosulfonic acid (ClSO3H). The effects of grafting conditions (e.g., monomer concentration, irradiation dose) on the degree of grafting and sulfonation condition (e.g., optimum concentration of ClSO3H) on the degree of sulfonation were studied. The degree of grafting, the degree of sulfonation and the physico-chemical properties (such as, water uptake, mechanical strength, thermal durability, hydrolytic stability, oxidative stability) of the gamma radiation-induced grafted membrane were found to be better when compared to those of the UV-radiation grafted membrane. The membrane shows higher ion exchange capacity (0.9 mmol g?1) and higher proton conductivity (0.075 S cm?1), similar to those of Nafion membrane.  相似文献   

9.
A new plasticized dual-phase polymer electrolyte (DPE) with enhanced phase compatibility based on Poly(MMA-g-PVC)/PMMA blends has been studied. For the DPE, PMMA is selectively impregnated with the lithium salt solution forming an ion-conducting network, while Poly(MMA-g-PVC) produces good mechanical strength. Their chemical characters, thermal behavior, morphology, ionic conductivity and interfacial compatibility with lithium metal electrode were characterized by using of infrared spectroscopy (IR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), optical microscopic images, alternating current impedance (AC impedance) and linear sweep voltammetry (LSV), respectively. The ionic conductivity of DPE increases with the ratio of PMMA/Poly(MMA-g-PVC) (by weight), and the absorbed liquid electrolyte in the polymer blends plays the first important way in this behavior. Room-temperature ionic conductivity of the order of 10−3 S cm−1 has been achieved for DPE, in addition, the DPE also shows good compatibility with Li electrodes and sufficient electrochemical stability for safe operation in Li batteries.  相似文献   

10.
Thermal storage cotton possessing solid–solid phase change properties was prepared by direct grafting of polyethylene glycol (PEG) on cotton fiber/cloth. Attempt has been made to characterize intermediates so that desired grafting could be obtained. The grafting was done by using urethane linkage and the grafted cotton was found to undergo solid–solid phase transition. The modified cotton was characterized by using Fourier transform infrared spectroscopy (FT-IR), 13C CPMAS, polarizing optical microscopy, differential scanning calorimetry (DSC) and thermogravimetry respectively. The DSC study revealed quite good storage effect of grafted cotton and the enthalpy of melting was found to be 55–59 J/g with a peak appearing at around 60 °C. During cooling scan, the crystallization peak appeared at around 38 °C. Further, thermogravimetric analysis confirmed good thermal stability up to 300 °C. Appreciable improvement of mechanical properties of cotton has been observed after grafting. The polarizing optical micrograph clearly showed change of morphology after grafting, i.e., the grafted PEG adhering to fiber surface.  相似文献   

11.
Poly(methyl methacrylate) (PMMA) and CaCu3Ti4O12 (CCTO) composites were fabricated via melt mixing followed by hot pressing technique. These were characterized using X-ray diffraction, thermo gravimetric, thermo mechanical, differential scanning calorimetry, fourier transform infrared (FTIR) and Impedance analyser for their structural, thermal and dielectric properties. Composites were found to have better thermal stability than that of pure PMMA. However, there was no significant difference in the glass transition (T g ) temperature between the polymer and the composite. The appearance of additional vibrational frequencies in the range 400–600 cm?1 in FTIR spectra indicated a possible interaction between PMMA and CCTO. The composite, with 38 vol% of CCTO (in PMMA), exhibited remarkably low dielectric loss at high frequencies and the low-frequency relaxation is attributed to the interfacial polarization/MWS effect. The origin of AC conductivity particularly in the high-frequency region was attributed to the electronic polarization.  相似文献   

12.
Grafting of ethylene glycol methacrylate phosphate (EGMP) monomer polymerized from alumina nanoparticles has been performed in order to confer a better thermal stability and fire retardancy to PMMA and PS nanocomposites. Grafting and polymerization processes have been investigated using FTIR, TGA, and elemental analyses. Thermal stability and decomposition routes of monomer and polymer grafted alumina have been studied using thermogravimetric analysis and compared with the thermal behavior of the same alumina modified with octylsilane. The thermal stability of EGMP supported by the nanoparticles is higher than that of free EGMP. The incorporation of 5 wt% of both surface treated alumina in PMMA and PS leads to an improvement of thermal stability in comparison with unfilled polymers as well as nanocomposites containing unmodified alumina. Furthermore, the grafting of organic compounds on alumina also allows the peak of heat release rate measured using a cone calorimeter to be significantly reduced for PMMA nanocomposites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

A novel polyhedral oligomeric silsesquioxane/polymethyl methacrylate (POSS/ PMMA) hybrid nanocomposite was synthesized by using potassium persulfate and sodium dodecyl sulfate as the initiator and emulsifier, respectively. The structures of prepared nanocomposites were characterized with X-ray photoelectron spectroscopy, laser particle size analysis, and X-ray diffraction. The thermal properties of the POSS/PMMA nanocomposites were studied by differential scanning calorimetry, and thermogravimetric analysis. The results indicate that POSS could be incorporated into the PMMA matrix at molecular lever and the incorporation of POSS molecules can improve the thermal stability of PMMA.

[Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the following free supplemental files: Additional figures]  相似文献   

14.
不同结构颗粒对PMMA基复合材料性能影响   总被引:1,自引:0,他引:1  
采用原位本体聚合法制备PMMA/MCM-41(with template),PMMA/SBA-15(with template),PMMA/SiO2三种复合材料.研究了介孔分子筛MCM-41,SBA-15和SiO2对PMMA复合材料拉伸强度,冲击强度,热稳定性的影响.由于合成介孔分子筛MCM-41,SBA-15时所用的模板剂CTAB和P123分布于孔口处和颗粒表面上,分别与PMMA基体产生物理缠结作用,增加了两者的相容性;且P123(EO20PO70EO20)表面有较大的PO/EO比率,与小分子量的CTAB相比有较强的疏水性,使得PMMA/SBA-15(with template)复合材料的性能要优于PMMA/MCM-41(with template).  相似文献   

15.
Abstract

The graft copolymerization of methyl methacrylate onto poly(ethylene terephthalate) fibers has been studied using benzoyl peroxide as initiator. The grafting reactions were carried out within the 70 to 90°C temperature range, and the variations of graft yield with monomer and initiator concentrations were also investigated. The overall activation energy for grafting was calculated as 34.1 kcal/mol. The results of dyeability with the disperse dye suggested that diffusion into the fiber structure was moderately difficult when the graft yield reached 14?15%. The maximum graft yield was obtained at a benzoyl peroxide concentration of 4.00 × 10?3 M. The decomposition temperature values obtained from thermogravimetric analysis show that the thermal stability of poly(ethylene terephthalate) fibers decreased as a result of grafting. Further, such change in the properties of methyl methacrylate grafted fibers as density, diameter, and moisture regain were also determined.  相似文献   

16.
Mutual radiation grafting technique has been applied to carry out grafting of acrylamide (AAm) onto guar gum (GG) using high-energy Co60 γ radiation to enhance its flocculating properties for industrial effluents. The grafted product was characterized using analytical probes like elemental analysis, thermal analysis, Fourier transformed infrared (FTIR), X-ray diffraction (XRD) and scanning electron microscope (SEM). The grafting extent was observed to decrease with the dose rate and increase with the concentration of AAm. Thermo gravimetric analysis (TGA) of grafted and ungrafted samples indicated better stability of grafted product. γ and microwave radiation effect on grafted and virgin GG has also been reported.  相似文献   

17.
Surface modified silver nanoparticles dispersed in chloroform were encapsulated in poly(methylmethacrylate) (PMMA) by in-situ radical polymerization of methyl methacrylate initiated by 2,2′-azobisisobutyronitrile. The particle size distribution of colloidal silver nanoparticles was determined using transmission electron microscopy. The obtained transparent nanocomposite films were characterized using UV-vis spectroscopy, 1H NMR spectroscopy and gel permeation chromatography. Effective medium Maxwell-Garnett theory was used in order to explain optical properties of nanocomposite films taking into account inhomogeneous spatial distribution of silver nanoparticles in PMMA matrix. The influence of the silver nanoparticles on the thermal properties of the PMMA matrix was investigated using thermo-gravimetric analysis and differential scanning calorimetry. Thermo-oxidative stability of the PMMA in the presence of low content of inorganic phase is significantly improved. The glass transition temperatures of nanocomposites are slightly lower compared to the pure polymer.  相似文献   

18.
Abstract

Halogen-free flame retardant polyacrylonitrile (PAN) was prepared via hydrolyzing the nitrile groups of PAN using aqueous sodium carbonate solution/hydrogen peroxide followed by grafting with diphenylphosphinyl chloride. The structure of original PAN, hydrolyzed PAN (HPAN), and flame retardant PAN (FR-PAN) samples were characterized using Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and 1H NMR spectroscopy. The thermal properties of the materials were assessed using thermogravimetric analysis. The FTIR spectroscopy indicates that a carbonyl group is present in hydrolyzed HPAN and some characteristic PAN absorption peaks decreased slightly upon hydrolysis. The XPS results show that FR-PAN contained phosphorus, indicating that diphenylphosphinyl chloride has been grafted onto HPAN, which is in accordance with the phenomenon of the self-extinguishing phenomena of FR-PAN during burning experiments. The TG curves indicate the presence of a char residue for FR-PAN of 45% at 800?°C, a higher char residue than that of original PAN (39%). Therefore, FR-PAN displays better thermal stability and char forming capability than does the untreated polymer.  相似文献   

19.
Polypropylene (PP) fibers were grafted with methylmethacrylate. Effects of direct and pre-irradiation method and monomer concentration on the degree of grafting were investigated. The grafted PP fibers were characterized by swelling measurements, IR spectroscopy and by its mechanical and thermal properties. It was found that the direct method was more efficient than the indirect or pre-irradiation method and the monomer concentration for highest degree of grafting was 40% of MMA. Mechanical properties (tensile strength) and thermal stability decrease with grafting yield. Those changes were related to degradation of tie molecules between crystals and formation of rigid branches of PMMA on PP amorphous phase.  相似文献   

20.
In this work, poly(methyl methacrylate) (PMMA) was grafted onto amine treated multi-walled carbon nanotubes (NH-MWNTs) and the physical and rheological properties of the NH-MWNTs–g-PMMA nanocomposites were investigated. The graft reaction of NH-MWNTs and the PMMA matrix was confirmed from the change of the N1S peaks, including those of amine oxygen and amide oxygen, by X-ray photoelectron spectroscopy (XPS). The thermal and mechanical properties of the NH-MWNT–g-PMMA nanocomposites were enhanced by the graft reaction between NH-MWNTs and PMMA matrix. In addition, the viscosity of the nanocomposites was increased with the addition of NH-MWNTs. Storage (G′) and loss modulus (G″) were significantly increased by increase in the NH-MWNT content compared to acid-treated MWNTs/PMMA nanocomposites. This increase was attributed to the strong interaction by the grafting reaction between NH-MWNTs and the PMMA matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号