首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Recently, research on solid polymer electrolytes (SPEs) for lithium-ion batteries (LIBs) has been actively carried out as an alternative to conventional liquid electrolytes that present safety issues such as flammability and explosion. However, the SPEs show relatively low ion conductivity, compared to the liquid electrolytes. In this study, a poly(vinylidene difluoride) (PVDF)-based SPE was prepared by introducing two different electrolytes; one is weak-binding lithium bis(trifluoromethane)sulfonimide (LiTFSI) salt mixture with solvating plastic crystal succinonitrile (SN) and the other is lithium bis(fluorosulfonyl)imide (LiFSI) salts. Among the SPEs studied, the PVDF/LiFSI-containing SPE membrane exhibited the highest room temperature ion conductivity of 1 x 10?3 S/cm, characterized by electrochemical impedance spectroscopy (EIS).  相似文献   

2.
Abstract

Recently, extensive efforts have focused on the development of solid polymer electrolytes (SPEs) requiring high mechanical performance without sacrificing ion conductivity. To develop such a SPE, we incorporate robust silica mesoporous particles (SMP) into the epoxy-based SPEs, and increasing the SMP content raises the glass transition temperature of the SPEs. This enables to increase the mechanical properties of the SPEs, supported by the microstructural investigation showing a highly compact structure. Ionic conductivities of these SPEs follow Vogel temperature dependence, and increasing the silica nanoparticle content leads to a slight decrease in the conductivity, consistent with the dielectric response investigation.  相似文献   

3.
ABSTRACT

The effect of amounts (3, 5, 10, 20 wt%) of Bi2O3 on the sintering characteristics and porosity of Samaria-doped Ceria (SDC) based Lithium carbonate has been evaluated. The density had a maximum as high as 98.5% of theoretical density at 800°C with only 1wt%Li2CO3 and 3 wt%Bi2O3. The composite electrolytes showed high ion conductivity at evaluated temperatures. Composition and calcination temperature were found to affect the morphology and conductivity of the composite electrolytes greatly. The total conductivity closed to 3 orders of magnitude greater than pure SDC at operating temperature of 900°C and 3.5 orders of magnitude greater than pure SDC at operating temperature of 600°C. Especially, the best sample containing 3 wt% Bi2O3 sintered at 800°C for 2 h which had an ionic electrical conductivity of 0.17S cm?1. According to fuel cell performance, these composite electrolytes are chemically stable, which is an attractive prospect in intermediate temperature solid oxide fuel cell applications.  相似文献   

4.
New polymer electrolytes (PEs), potentially interesting for solid-state electrochemical devices applications, were synthesized by a solvent casting method using pectin and ionic liquid (IL) N,N,N-trimethyl-N-(2-hydroxyethyl)ammonium bis(trifluoromethylsulfonyl)imide ([N1 1 1 2(OH)] [NTf2]. The resulting electrolytes besides being moderately homogenous and thermally stable below 155°C, they also exhibited good mechanical properties. The SPE membranes were analyzed by differential scanning calorimetry (DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and complex impedance spectroscopy.  相似文献   

5.
ABSTRACT

Polymer electrolytes have been prepared by blending methylcellulose (MC)-potato starch, doped with lithium perchlorate (LiClO4) and plasticized with glycerol. The blend of 60 wt% MC-40 wt% starch was found to be the most suitable ratio to serve as polymer host. Fourier transform infrared (FTIR) spectroscopy analysis proved the interaction among the components. X-ray diffraction (XRD) analysis indicated that the conductivity enhancement is due to the increase in amorphous content. The highest ionic conductivity obtained at room temperature was (4.25 ± 0.82) × 10?4 S cm?1 for MC-starch-LiClO4-20 wt% glycerol. The highest conducting samples in both systems were found to obey Arrhenius rule. Dielectric study further strengthens the conductivity result.  相似文献   

6.
This work focuses on polymer electrolytes composed of a starch-chitosan blend host, ammonium iodide (NH4I) and glycerol. Fourier transform infrared (FTIR) analysis confirms the interaction of starch-chitosan-NH4I-glycerol. The highest room temperature conductivity is (1.28 ± 0.07) × 10?3 S cm?1, obtained by a sample containing 30 wt% glycerol. Dielectric studies showed that the electrolytes obeyed non-Debye behavior. The total ionic transference number for the 30 wt% glycerol sample was 0.991, and the conduction mechanism for this sample followed the quantum mechanical tunneling (QMT) model. Linear sweep voltammetry (LSV) showed that this sample was electrochemically stable up to 1.90 V. The highest conducting sample was used in the fabrication of an electrical double layer capacitor (EDLC) cell.  相似文献   

7.
Retaining reflection color developed from the photonic crystals has been our main interest. Persistent reflecting color from polymer photonic crystals using non-volatile solvents has been huddled by permeation of large molecular weight solvents. Some ionic liquids can permeate in between polymer photonic crystal layers. Polystyrene-b-poly-2-vinylpyridine (PS-b-P2VP) was used to obtain photonic crystals. The molecular weight of PS-b-P2VP and the hydrophobicity of the ionic liquids were altered to attain persistent color. Imidazolium and 1-ethyl-3-methylimidazolium were used as cations of ionic liquids where the anion was bis(trifluoromethanesulfonyl)imide. The photonic crystals made with block copolymers of 84k–69k and 57k–57k molecular weights showed the persistent distinct colors by swelling with the ionic liquids.  相似文献   

8.
A glass of composition (20 ? x)Li2O–xLiCl–65B2O3–10SiO2–5Al2O3 where 0 ? x ? 12.5 wt% is prepared using the normal melt-quenching technique. The optical constants and electrical conductivity and their correlation are investigated, furnished and discussed with the substitution of Li2O for LiCl. The mechanism of the optical absorption and the calculated Urbach energy follow the rule of phonon-assisted transitions. The ionic conduction mechanism is determined by activation energy process. Substitution up to 10 wt% LiCl provides high ionic conductivity (1.9 × 10?2 Ω?1 m?1) due to the high average electronegativity of LiCl which increases the polarizability of lithium ions. The small cation–anion distance approach confirmed the enhancement in ionic conductivity of LiCl containing glass compared to that of Li2O. Due to the large size of Cl? ions, there is an expansion of the lattice which in turn broadens the available path windows. For 12.5 wt% LiCl, anomalous density behavior is observed and a reduction in conductivity is occurred, σ = 5.4 × 10?3 Ω?1 m?1. Owing to the model of bond fluctuation, the reduction is attributed to the increase in the alkali halide concentration which creates bottlenecks that hinder the motion of Li+ ions. The ionic conductivity character is strongly supported by the behavior of the glass ionicity factor, density, molar volume, refractive index, average boron–boron separation, molar refraction, metallization criterion and non-bridging oxygen concentration of the studied glass.  相似文献   

9.
This paper focuses on the effect of lithium triflate (LiCF3SO3) on the structural and conduction properties of lauroyl (L)-chitosan/poly(metylmethacryalate) (PMMA)-based polymer electrolytes. Films of L-chitosan/PMMA blends and its complexes were prepared using a solution-casting technique. The ionic conductivity of the system was measured over a wide range of frequency between 50 Hz-1 MHz. Impedance plot for the samples demonstrates two well-defined regions. The disappearance of the high frequency semicircular region led to a conclusion that the current carriers are ions. Sample with 30 wt% of LiCF3SO3 showed the highest conductivity of 7.59 ± 3.64 × 10?4 Scm?1 at room temperature. This is consistent with the results obtained from infrared spectroscopy.  相似文献   

10.
S. Ramesh  Chiam-Wen Liew 《Journal of Non》2011,357(10):2132-2138
1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl imide), BmImTFSI based poly(methyl methacrylate)-poly (vinyl chloride), PMMA-PVC gel polymer electrolytes were prepared by solution casting technique. These ionic liquid-based gel polymer electrolytes exhibit Arrhenius type temperature dependence of ionic conductivity. The highest ionic conductivity of (8.08 ± 0.01) × 10− 4 Scm−1 was achieved at 80 °C upon addition of 60 wt.% of BmImTFSI. X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies revealed the amorphous nature and morphology of these polymer electrolytes, respectively. The lower coherence length of the peak inferred the higher amorphous degree in these polymer matrices. Decreases in Tg and Tm indicate the flexibility of polymer backbone. The amorphous behavior of these ionic liquid-based gel polymer electrolytes are also enhanced as shown in differential scanning calorimetry (DSC) analysis. On the contrary, thermogravimetric analysis (TGA) divulges that the thermal stability of polymer electrolytes has been improved upon impregnation of BmImTFSI.  相似文献   

11.
Highly lithium ion conducting glasses and glass–ceramics were prepared by a mechanical milling technique in the Li2S-based sulfide and oxysulfide systems. The Li2S–P2S5 glass–ceramics showed ionic conductivity as high as 3.2 × 10?3 S cm?1 at room temperature. All-solid-state batteries using these sulfide-based materials as a solid electrolyte showed excellent charge–discharge performance with high capacity and high cycleability. The cells with the combination of the SnS–P2S5 glassy electrode and the Li2S–P2S5 glass–ceramic electrolyte worked as a secondary battery, which was a first step of glassy monolithic cells with a common glass network.  相似文献   

12.
An increase and homogenization of electrical conductivity is essential in epoxy carbon fiber laminar aeronautical composites. Dynamic conductivity measurements have shown a very poor transversal conductivity. Double wall carbon nanotubes have been introduced into the epoxy matrix to increase the electrical conductivity. The conductivity and the degree of dispersion of carbon nanotubes in epoxy matrix were evaluated. The epoxy matrix was filled with 0.4 wt.% of CNTs to establish the percolation threshold. A very low value of carbon nanotubes is crucial to maintain the mechanical properties and avoid an overload of the composite weight. The final carbon fiber aeronautical composite realized with the carbon nanotubes epoxy filled was studied. The conductivity measurements have shown a large increase of the transversal electrical conductivity. The percolative network has been established and scanning electron microscopy images confirm the presence of the carbon nanotube conductive pathway in the carbon fiber ply. The transversal bulk conductivity has been homogenized and improved to 10? 1 S·m? 1 for a carbon nanotubes loading near 0.12 wt.%.  相似文献   

13.
Fast ion conducting solid electrolytes are becoming increasingly important owing to their application in solid state ionic devices. The present work deals with the silver ion conducting x AgI – (1–x)Ag2Cr2O7 electrolyte system. These electrolytes have been characterised by X-ray diffraction, electrical conductivity, electronic conductivity and thermoelectric power techniques. A high ionic conductivity of the order of 10−3 S/cm has been observed for the composition mol% 80 AgI–20 Ag2Cr2O7, at room temperature. The electronic conductivity of this electrolyte is three orders of magnitude lower than the ionic conductivity.  相似文献   

14.
New composite polymer electrolytes (CPE) are prepared using solution-casting technique. The CPE are based on polyethylene oxide (PEO) and employ lithium hexafluorate (LiPF6) as the doping salt, ethylene carbonate (EC) as the plasticizer and amorphous carbon nanotubes (αCNTs) as the filler. The crystallinity and ionic conductivity of the CPE are examined in this work. The conductivity increases from 10?10 to 10?5 S cm?1 upon the addition of salt. The incorporation of EC and αCNTs into the salted polymer enhances the conductivity significantly to 10?4 and 10?3 S cm?1. The Vogel–Tamman–Fulcher (VTF) plots suggest that the temperature dependence of conductivity is a thermally activated process. Differential Scanning Calorimetry (DSC) studies show that the melting transition temperature and crystallinity decrease upon the addition of salt, EC and αCNTs into the polymer electrolyte system. The complexation, nature and concentration of the various ionic species are examined using Fourier Transform Infrared Spectroscopy (FTIR). Scanning electron microscopy (SEM) images show the changes in morphologies of the composite polymer electrolytes. The application of CPE especially in batteries and the advantages of this composite are highly conductive and stable at elevated temperature.  相似文献   

15.
This paper describes the preparation and characterization of lithium fluoroalkylphosphate-containing composite polymer electrolyte based on a polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) matrix. A mixture of ethylene carbonate and diethyl carbonate was used as a plasticizing agent and nanoscopic Al2O3 as a filler. The membranes were characterized by ac impedance, SEM, DSC, FTIR and fluorescence. An electrolyte with 2.5 wt% Al2O3 exhibited a conductivity of 9.8 × 10−4 S cm−1 at ambient temperature. It was found that filler contents above 2.5 wt% rendered the membranes less conducting.  相似文献   

16.
Abstract

The electrical conductivity and the mobility measurements in nematic mixtures Merck 5 and Merck 7a are reported. The drift mobility of carriers about 10?5 cm2/Vs at room temperature was determined. Identical activation energies of conductivity and mobility were obtained (0.4 eV for Merck 7a and 0.3 eV for Merck 5). In our opinion, the conductivity of examined mixtures is controlled by ionic transport.  相似文献   

17.
《Journal of Non》2006,352(21-22):2143-2151
UV-curable, organic–inorganic hybrid coatings based on a UV-curable epoxyacrylate resin (EA) and methacryloxypropyl trimethoxysilane were prepared by the sol–gel method. 2,2′-Bis(4-β-hydroxy ethoxy) phenyl propane was modified by a coupling agent, 3-isocyanato propyl triethoxy silane, to improve the compatibility of the organic and inorganic phases. The formulations were applied onto Aluminum panels and cured by UV light to obtain a hard and clear coating with a good adhesion. The structural characterization of cured hybrid materials was performed using solid state 29Si NMR spectroscopy. The real time infrared technique was used to follow the degree of double bond conversion and photopolymerization rate. The thermal properties of the coatings are improved depends on the ‘component A’ composition in hybrid mixture which was composed of methacryloxy propyl trimethoxysilane (MAPTMS) and trimethoxysilane terminated HEPA urethane (TMSHU). The char yield of pure epoxy acrylate resin was 0.7 wt% and that of 30 wt% of component A containing hybrid coating was 4.6 wt% at 900 °C in air atmosphere. The morphology of the hybrid materials was examined by scanning electron microscopy. The hybrids were nanocomposites.  相似文献   

18.
e-Gun deposited bi-layer structures of LiCoO2/(Li2O)x · (B2O3) cathode material and solid electrolyte have been investigated by SEM and impedance spectroscopy. The crystallinity of the substrates, on which the structures are deposited, influences the extent of crystallization, and consequently the ionic conductivity, of the electrolyte layer. Comparison of impedance spectra between bi-layers and electrolyte single layers indicates that the total ionic conductivity of the electrolyte in the bi-layer is decreased with respect to the single layer, due to higher crystallization.  相似文献   

19.
The mixed conducting nature of the lithium vanadate LixV2O5 (x = 0.4 – 1.4) prepared by solid state reaction has been analyzed by Wagner's polarization method. The increase of electronic conductivity with increase in lithium content has been observed. The low diffusion constant has been observed for lithium ionic motion in high lithium content samples. The conductivity spectra analysis shows the high columbic repulsive forces between mobile lithium ions in high lithium content samples. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
The ionic conductivity of evaporated Li2OB2O3 thin films has been studied. These thin films were found to show a considerably high ionic conductivity of 1 × 10?7 Ω?1 cm?1 at room temperature. The conductivity increases with increasing Li content and exhibits a maximum value near 3Li2O·B2O3. The structure of these films was determined using infrared absorption and laser Raman scattering spectroscopy. Using the results, the correlation between structure and conductivity is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号