首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
建立一种新的高阶位移模式:分层假设复合材料层合板的位移场,利用各层间应力及位移的连续性条件,导出了作为整体的层合板控制微分方程。最后,采用这一高阶剪切理论来分析复合材料矩形层合板的自由振动。数值计算采用有限差分法,并编制了计算程序,计算得出了六种不同边界条件、不同铺层、不同宽厚比工况下的矩形层合板的自振频率。同经典理论解进行比较,可以看出本文方法简便易行,且精度较高,可以在微机上实用。  相似文献   

2.
考虑横法向热变形,建议了C0型Reddy理论,并用于分析复合材料层合/夹层板热膨胀问题。虽然考虑了横法向热应变,但不增加额外的位移变量。此理论位移场不含有横向位移一阶导数,构造有限元时仅需C0插值函数。基于这一模型,运用虚位移原理推导了复合材料板平衡方程以及构造了6节点三角形板单元,并分析了简支复合材料层合/夹层板的热膨胀问题。数值结果表明,建立的模型能准确分析复合材料层合/夹层板热膨胀问题,而忽略横法向热应变的理论分析热膨胀问题误差较大。  相似文献   

3.
刘毅  金峰 《应用力学学报》2007,24(4):526-529
近年来发展的渐进结构优化方法是一种有前途的结构拓扑和形状优化方法.本文在渐进结构优化方法的框架内建立了统一敏感度的概念,并基于固定网格有限元技术,发展了一种新的增加材料技术,提出了双向固定网格渐进结构优化方法.将该方法应用于复合材料壳结构开孔形状优化,以孔周等Tsai-Hill强度值作为优化目标,可以得到合理的最优解,证明了双向固定网格渐进结构优化方法的适用性.不同的初始点能得到几乎相同的最优解,展示了本文方法良好的全局最优性.  相似文献   

4.
基于已有锯齿理论构造单元时,需使用满足单元间C1连续的插值函数,难于构造多节点高阶单元,而且精度较低。针对已有锯齿理论存在的问题,本文首先发展了C0型锯齿理论。通过虚位移原理推导出在热载荷作用下复合材料梁的平衡方程,并给出了简支复合材料层合梁解析解。基于发展的锯齿理论分析了复合材料夹层梁和层合梁热膨胀问题,并与其他理论结果对比。数值结果表明,发展的C0型锯齿理论能克服已有锯齿理论的难题。  相似文献   

5.
This article presents a novel mathematical model for moderately thick and deep laminated composite conoidal shell. The zero transverse shear stress at top and bottom of conoidal shell conditions is applied. Novelty in the present formulation is the inclusion of curvature effect in displacement field and cross curvature effect in strain field. This present model is suitable for deep and moderately thick conoidal shell. The peculiarity in the conoidal shell is that due to its complex geometry, its peak value of transverse deflection is not at its center like other shells. The C1 continuity requirement associated with the present model has been suitably circumvented. A nine-node curved quadratic isoparametric element with seven nodal unknowns per node is used in finite element formulation of the proposed mathematical model. The present model results are compared with experimental, elasticity, and numerical results available in the literature. This is the first effort to solve the problem of moderately thick and deep laminated composite conoidal shell using parabolic transverse shear strain deformation across the thickness of conoidal shell. Many new numerical problems are solved for the static study of moderately thick and deep laminated composite conoidal shell considering 10 different practical boundary conditions, four types of loadings, six different hl/hh (minimum rise/maximum rise) ratios, and four different laminations.  相似文献   

6.
A sector p-element is presented for the large amplitude free vibration analysis of laminated composite annular sector plates. The effects of out-of-plane shear deformations, rotary inertia, and geometric non-linearity are taken into account. The shape functions are derived from the shifted Legendre orthogonal polynomials. The element stiffness and mass matrices are integrated analytically with the aid of symbolic computing. The method consists of modeling the annular sector plate as one element. The accuracy of the solution is improved simply by increasing the polynomial order. The time-dependent coefficients are described by a truncated Fourier series. The equations of free motion are obtained using the harmonic balance method and solved by the linearized updated mode method. Results for the linear and non-linear frequencies of clamped laminated composite annular sector plates are obtained. The case of a clamped isotropic annular sector plate is also shown. The linear frequencies are found to converge rapidly downwards as the polynomial order is increased. Comparisons of the linear frequencies with published results show excellent agreement. The effects of sector angle, inner-to-outer radius ratio, thickness-to-outer radius ratio, moduli ratio, number of plies, and layup sequence on the backbone curves are also investigated. It is shown that the hardening behavior increases or decreases depending on geometric and lamination parameters.  相似文献   

7.
This paper proposes a higher-order shear deformation theory to predict the bending response of the laminated composite and sandwich plates with general lamination configurations.The proposed theory a priori satisfies the continuity conditions of transverse shear stresses at interfaces.Moreover,the number of unknown variables is independent of the number of layers.The first derivatives of transverse displacements have been taken out from the inplane displacement fields,so that the C 0 shape functions are only required during its finite element implementation.Due to C 0 continuity requirements,the proposed model can be conveniently extended for implementation in commercial finite element codes.To verify the proposed theory,the fournode C 0 quadrilateral element is employed for the interpolation of all the displacement parameters defined at each nodal point on the composite plate.Numerical results show that following the proposed theory,simple C 0 finite elements could accurately predict the interlaminar stresses of laminated composite and sandwich plates directly from a constitutive equation,which has caused difficulty for the other global higher order theories.  相似文献   

8.
In this paper, the effect of sensitivity of randomness in system parameters on the nonlinear transverse central deflection response of laminated composite plates subjected to transverse uniform lateral pressure and thermal loading is examined. System parameters such as the lamina material properties, expansion of thermal coefficients, lamina plate thickness and lateral load are modelled as basic random variables. A higher order shear deformation theory in the von-Karman sense is used to model the system behavior of the laminated plate. A direct iterative-based C 0 nonlinear finite element method in conjunction with the first-order perturbation technique developed by the authors is extended for thermal problem to obtain the second-order response statistics, i.e., mean and variance of the nonlinear transverse deflection of the plate. Typical numerical results of composite plates with temperature independent and dependent material properties subjected to uniform temperature and combination of uniform and transverse temperature are obtained for various combinations of geometric parameters, uniform lateral pressures, staking sequences and boundary conditions. The results have been compared with those available in the literature and an independent Monte Carlo simulation.  相似文献   

9.
A meshless method based on thin plate spline radial basis functions and higher-order shear deformation theory are presented to analyze the free vibration of clamped laminated composite plates. The singularity of thin plate spline radial basis functions is eliminated by adding infinitesimal to the zero distance. Convergence characteristics of the present thin plate spline radial basis functions for the vibration analysis of the clamped laminated plates are investigated. The frequencies computed by the present method agree well with the available published results.  相似文献   

10.
大开口复合材料层合板强度破坏研究   总被引:5,自引:2,他引:3  
陈建霖  励争  储鹏程 《力学学报》2016,48(6):1326-1333
复合材料层合板的各向异性及非均质,使得复合材料层合板内部的破坏形式非常复杂.在复合材料结构的设计中,为满足制造及使用功能上的需求,在复合材料层合板承力结构件上不可避免地需要设计各种开口.然而,含大开口复合材料层合板的强度破坏问题变得更为复杂,使得现有的强度理论面临新的挑战.针对碳纤维增强复合材料大开口层合板受单向拉伸载荷作用下的强度破坏问题进行了数值分析和实验研究.首先,根据Hashin准则和刚度退化模型,对含不同圆形开口尺寸的[0]_(10)单向铺层、[0/90]_5和[±45]_5正交铺层的层合板,进行了单向拉伸载荷作用下渐进失效的数值模拟分析,获得了对应结构的极限载荷和破坏模式.在此基础上,采用数字图像相关方法,进行复合材料大开口层合板强度破坏的实验研究.研究结果表明,大开口复合材料层合板在单向拉伸加载下主要呈现脆性破坏形式,破坏起始位置处于应力集中区.此外,破坏强度和失效模式与复合材料铺层方式和开口尺寸大小密切相关.其中[±45]_5铺层的开口层合板承载能力最弱,分层破坏最严重.开口尺寸越大,结构的极限载荷值越低.同实验测试结果相比,数值模拟对复合材料层合板的损伤失效分析略显不足,往往很难全面分析复合材料层合板破坏失效过程中的各种因素的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号