首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
2.
3.
A novel method (in the context of quantitative structure–activity relationship (QSAR)) based on the k nearest neighbour (kNN) principle, has recently been introduced for the derivation of predictive structure–activity relationships. Its performance has been tested for estimating the estrogen binding affinity of a diverse set of 142 organic molecules. Highly predictive models have been obtained. Moreover, it has been demonstrated that consensus-type kNN QSAR models, derived from the arithmetic mean of individual QSAR models were statistically robust and provided more accurate predictions than the great majority of the individual QSAR models. Finally, the consensus QSAR method was tested with 3D QSAR and log?P data from a widely used steroid benchmark data set.  相似文献   

4.
5.
6.
7.
8.
A series of 1-[(1,3,4-thiadiazol-2-yl)methyl]-1H-1,2,4-triazole derivatives were prepared and evaluated for their antifungal activities. The chemical structures of these compounds were determined by means of elemental analyses, 1H NMR, and X-ray crystallography. Quantitative structure–activity relationship (QSAR) studies were performed on these compounds using physicochemical parameters as independent parameters and antifungal activity as a dependent parameter, where antifungal activity correlated best (r > 0.9) with hydrophobic parameters (π) and indicator (H). Moreover, the results are interpreted on the basis of a multiple regression model. The model has been internally and externally validated. Furthermore, the domain of applicability which indicates the area of reliable predictions is defined.  相似文献   

9.

Derivation of quantitative structure-activity relationships (QSAR) usually involves computational models that relate a set of input variables describing the structural properties of the molecules for which the activity has been measured to the output variable representing activity. Many of the input variables may be correlated, and it is therefore often desirable to select an optimal subset of the input variables that results in the most predictive model. In this paper we describe an optimization technique for variable selection based on artificial ant colony systems. The algorithm is inspired by the behavior of real ants, which are able to find the shortest path between a food source and their nest using deposits of pheromone as a communication agent. The underlying basic self-organizing principle is exploited for the construction of parsimonious QSAR models based on neural networks for several classical QSAR data sets.  相似文献   

10.
脂质体电动色谱 (Liposome electrokinetic chromatography,LEKC)是一种简单快速的评价药物与生物膜相互作用的方法。本文建立了脂质体电动色谱作为高通量筛选皮肤渗透性的体外分析方法。将脂质体电动色谱中保留因子的对数值(log k)作为自变量建立了定量保留活性关系式。采用SPSS分析软件对于16种结构不同的化合物进行分析,结果表明log k与皮肤渗透性常数线性相关性良好( R2=0.886)。采用交互验证评价了该模型的预测能力。在定量保留活性关系中的一个变量和传统定量构效关系中的三个变量可解释的能力( R2 =0.704)相似。文中建立的定量保留活性关系模型对于新化合物早期的筛选可提供一种有效快捷的方法。  相似文献   

11.
12.
13.
14.
15.
Using 84 structurally diverse and experimentally validated LSD1/KDM1A inhibitors, quantitative structure–activity relationship (QSAR) models were built by OECD requirements. In the QSAR analysis, certainly significant and understated pharmacophoric features were identified as critical for LSD1 inhibition, such as a ring Carbon atom with exactly six bonds from a Nitrogen atom, partial charges of lipophilic atoms within eight bonds from a ring Sulphur atom, a non-ring Oxygen atom exactly nine bonds from the amide Nitrogen, etc. The genetic algorithm–multi-linear regression (GA-MLR) and double cross-validation criteria were used to create robust QSAR models with high predictability. In this study, two QSAR models were developed, with fitting parameters like R2 = 0.83–0.81, F = 61.22–67.96, internal validation parameters such as Q2LOO = 0.79–0.77, Q2LMO = 0.78–0.76, CCCcv = 0.89–0.88, and external validation parameters such as, R2ext = 0.82 and CCCex = 0.90. In terms of mechanistic interpretation and statistical analysis, both QSAR models are well-balanced. Furthermore, utilizing the pharmacophoric features revealed by QSAR modelling, molecular docking experiments corroborated with the most active compound’s binding to the LSD1 receptor. The docking results are then refined using Molecular dynamic simulation and MMGBSA analysis. As a consequence, the findings of the study can be used to produce LSD1/KDM1A inhibitors as anticancer leads.  相似文献   

16.
The predictive accuracy of the model is of the most concern for computational chemists in quantitative structure-activity relationship (QSAR) investigations. It is hypothesized that the model based on analogical chemicals will exhibit better predictive performance than that derived from diverse compounds. This paper develops a novel scheme called "clustering first, and then modeling" to build local QSAR models for the subsets resulted from clustering of the training set according to structural similarity. For validation and prediction, the validation set and test set were first classified into the corresponding subsets just as those of the training set, and then the prediction was performed by the relevant local model for each subset. This approach was validated on two independent data sets by local modeling and prediction of the baseline toxicity for the fathead minnow. In this process, hierarchical clustering was employed for cluster analysis, k-nearest neighbor for classification, and partial least squares for the model generation. The statistical results indicated that the predictive performances of the local models based on the subsets were much superior to those of the global model based on the whole training set, which was consistent with the hypothesis. This approach proposed here is promising for extension to QSAR modeling for various physicochemical properties, biological activities, and toxicities.  相似文献   

17.
In this study we designed novel substituted benzimidazole derivatives and predicted their absorption, distribution, metabolism, excretion and toxicity (ADMET) properties, based on a predictive 3D QSAR study on 132 substituted benzimidazoles as AngII–AT1 receptor antagonists. The two best predicted compounds were synthesized and evaluated for AngII–AT1 receptor antagonism. Three different alignment tools for comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used. The best 3D QSAR models were obtained using the rigid body (Distill) alignment method. CoMFA and CoMSIA models were found to be statistically significant with leave-one-out correlation coefficients (q2) of 0.630 and 0.623, respectively, cross-validated coefficients (r2cv) of 0.651 and 0.630, respectively, and conventional coefficients of determination (r2) of 0.848 and 0.843, respectively. 3D QSAR models were validated using a test set of 24 compounds, giving satisfactory predicted results (r2pred) of 0.727 and 0.689 for the CoMFA and CoMSIA models, respectively. We have identified some key features in substituted benzimidazole derivatives, such as lipophilicity and H-bonding at the 2- and 5-positions of the benzimidazole nucleus, respectively, for AT1 receptor antagonistic activity. We designed 20 novel substituted benzimidazole derivatives and predicted their activity. In silico ADMET properties were also predicted for these designed molecules. Finally, the compounds with best predicted activity were synthesized and evaluated for in vitro angiotensin II–AT1 receptor antagonism.  相似文献   

18.
19.
ABSTRACT

The human breast cancer resistance protein (BCRP), one of the members of the large ATP binding cassette (ABC) transporter superfamily, is crucial for resistance against chemotherapeutic agents. Currently, it has been emerged as one of the best biological targets for the designing of small molecule drugs capable of eliminating multidrug resistance in breast cancer. In order to gain insights into the relationship between the molecular structure of compounds and the ABCG2 inhibition, a multi-QSAR approach using different methods was performed on a dataset of 294 ABCG2 inhibitors with diverse scaffolds. The best models obtained by different chemometric methods have the following statistical characteristics: Monte Carlo Optimization-based QSAR (sensitivity = 0.905, specificity = 0.6255, accuracy = 0.756, and MCC = 0.545), Bayesian classification model (sensitivity = 0.735, specificity = 0.775, and concordance = 0.757); structural and physicochemical interpretation analysis-random forest method (balance accuracy = 0.750, sensitivity = 0.810, and specificity = 0.700). Additionally, structural fingerprints modulating the ABCG2 inhibitory properties were identified from the best models of each method and also validated with each other. The current modelling study is an attempt to get a deep insight into the different important structural fingerprints modulating ABCG2 inhibition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号