首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive oxygen species (ROS) performs a pivotal function as a signaling mediator in receptor-mediated signaling. However, the sources of ROS in this signaling have yet to be determined, but may include lipoxygenases (LOXs) and NADPH oxidase. The stimulation of lymphoid cells with TNF-alpha, IL-1beta, and LPS resulted in significant ROS production and NF-kappaB activation. Intriguingly, these responses were markedly abolished via treatment with the LOXs inhibitor nordihydroguaiaretic acid (NDGA). We further examined in vivo anti-inflammatory effects of NDGA in allergic airway inflammation. Both intraperitoneal and intravenous NDGA administration attenuated ovalbumin (OVA)-induced influx into the lungs of total leukocytes, as well as IL-4, IL-5, IL-13, and TNF-alpha levels. NDGA also significantly reduced serum levels of OVA-specific IgE and suppressed OVA-induced airway hyperresponsiveness to inhaled methacholine. The results of our histological studies and flow cytometric analyses showed that NDGA inhibits OVA-induced lung inflammation and the infiltration of CD11b+ macrophages into the lung. Collectively, our findings indicate that LOXs performs an essential function in pro-inflammatory signaling via the regulation of ROS regulation, and also that the inhibition of LOXs activity may have therapeutic potential with regard to the treatment of allergic airway inflammation.  相似文献   

2.
One of characteristic features of AIDS-related encephalitis and dementia is the infiltration of monocytes into the CNS. HIV-1 Tat was demonstrated to facilitate monocyte entry into the CNS. In this study, we examined the effect of HIV-1 Tat on the expression of adhesion molecules, generation of reactive oxygen species (ROS) and NF-kappaB activation in CRT-MG human astroglioma cells. Treatment of CRT-MG cells with HIV-1 Tat protein significantly increased protein and mRNA levels of ICAM-1 and VCAM-1, as measured by Western blot analysis and RT-PCR, indicating that Tat increases these protein levels at an mRNA level. In addition, Tat induced the activation of NF-kappaB in astrocytes. Treatment of CRT-MG with NF-kappaB inhibitors led to decrease in Tat-induced protein and mRNA expression of ICAM-1 and VCAM-1. Furthermore, HIV-1 Tat protein increased ROS generation. Inhibition of Tat-induced ROS generation by N-acetyl cysteine, vitamin C and diphenyl iodonium suppressed Tat-induced NF-kappaB activation, ICAM-1 and VCAM-1 expression, and monocyte adhesion in CRT-MG. These data indicate that HIV-1 Tat can modulate monocyte adhesiveness by increasing expression of adhesion molecules such as ICAM-1 and VCAM-1 via ROS- and NF-kappaB-dependent mechanisms in astrocytes.  相似文献   

3.
HIV-1 Tat is considered to be one of key players to facilitate monocyte entry into the CNS, which is characteristic feature of AIDS-related encephalitis and dementia. This study was performed to determine the regulatory function of superoxide dismutase (SOD) on the HIV-1 Tat-induced signaling pathways leading to NF-kappaB activation, expression of adhesion molecules, and monocyte adhesion in CRT-MG human astroglioma cells by using cell-permeable SOD. When cell-permeable SOD was added to the culture medium of CRT-MG cells, it rapidly entered the cells in dose- and time-dependent manners. Treatment of astrocytes with cell-permeable SOD led to decrease in Tat-induced ROS generation as well as NF-kappaB activation. Cell-permeable SOD inhibited the activation of MAP kinases including ERK, JNK and p38 by HIV-1 Tat. Treatment of CRT-MG cells with cell-permeable SOD significantly inhibited protein and mRNA levels of ICAM-1 and VCAM-1 up-regulated by HIV-1 Tat, as measured by Western blot analysis and RT-PCR. Furthermore, enhanced adhesiveness of monocyte to astrocyte by HIV-1 Tat was significantly abrogated by pretreatment with cell-permeable SOD fusion proteins. These data indicate that SOD has a regulatory function for HIV-1 Tat-induced NF-kappaB activation in astrocytes and suggest that cell-permeable SOD can be used as a feasible therapeutic agent for regulation of ROS-related neurological diseases.  相似文献   

4.
Mast cells are well recognized as key cells in allergic reactions, such as asthma and allergic airway diseases. However, the effects of mast cells and TNF-α on T-helper type 2 (Th2) cytokine-dependent asthma are not clearly understood. Therefore, an aim of this study was to investigate the role of mast cells on Th2 cytokine-dependent airway hyperresponsiveness and inflammation. We used genetically mast cell-deficient WBB6F1/J-Kitw/Kitw-v (W/Wv), congenic normal WBB6F1/J-Kit+/Kit+ (+/+), and mast cell-reconstituted W/Wv mouse models of allergic asthma to investigate the role of mast cells in Th2 cytokine-dependent asthma induced by ovalbumin (OVA). And we investigated whether the intratracheal injection of TNF-α directly induce the expression of ICAM-1 and VCAM-1 in W/Wv mice. This study, with OVA-sensitized and OVA-challenged mice, revealed the following typical histopathologic features of allergic diseases: increased inflammatory cells of the airway, airway hyperresponsiveness, and increased levels of TNF-α, intercellular adhesion molecule (ICAM)-1, and vascular cellular adhesion molecule (VCAM)-1. However, the histopathologic features and levels of ICAM-1 and VCAM-1 proteins in W/Wv mice after OVA challenges were significantly inhibited. Moreover, mast cell-reconstituted W/Wv mice showed restoration of histopathologic features and recovery of ICAM-1 and VCAM-1 protein levels that were similar to those found in +/+ mice. Intratracheal administration of TNF-α resulted in increased ICAM-1 and VCAM-1 protein levels in W/Wv mice. These results suggest that mast cells play a key role in a Th2 cytokine-dependent asthma model through production of adhesion molecules, including ICAM-1 and VCAM-1, by liberation of TNF-α.  相似文献   

5.
Reactive oxygen species (ROS) play a crucial role in acute lung injury. Tissue inflammation, the increased vascular permeability, and plasma exudation are cardinal features of acute lung injury. Angiopoietin-1 (Ang1) has potential therapeutic applications in preventing vascular leakage and also has beneficial effects in several inflammatory disorders. Recently developed COMP-Ang1 is more potent than native Ang1 in phosphorylating tyrosine kinase with immunoglobulin and EGF homology domain 2 receptor in endothelial cells. However, there are no data on effects and related molecular mechanisms of COMP- Ang1 on ROS-induced acute lung injury. We used hydrogen peroxide (H2O2)-inhaled mice to evaluate the effect of COMP-Ang1 on pulmonary inflammation, bronchial hyper-responsiveness, and vascular leakage in acute lung injury. The results have revealed that VEGF expression, the levels of IL-4, TNF-alpha, IL-1beta, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in lungs, the levels of hypoxia-inducible factor-1alpha (HIF-1alpha) and NF-kappaB in nuclear protein extracts, phosphorylation of Akt, and vascular permeability were increased after inhalation of H2O2 and that the administration of COMP-Ang1 markedly reduced airway hyper-responsiveness, pulmonary inflammation, plasma extravasation, and the increases of cytokines, adhesion molecules, and VEGF in lungs treated with H2O2. We have also found that the activation of HIF-1a and NF-kB and the increase of phosphoinositide 3-kinase activity in lung tissues after H2O2 inhalation were decreased by the administration of COMP-Ang1. These results suggest that COMP-Ang1 ameliorates ROS-induced acute lung injury through attenuating vascular leakage and modulating inflammatory mediators.  相似文献   

6.
Expression of matrix metalloproteinase-9 (MMP-9) is associated with airway remodeling and tissue injury in asthma. However, little is known about how MMP-9 is up-regulated in airway epithelial cells. In this study, we show that phorbol myristate acetate (PMA) induces MMP-9 expression via a protein kinase Calpha (PKCalpha)-dependent signaling cascade in BEAS-2B human lung epithelial cells. Pretreatment with either GF109203X, a general PKC inhibitor, or Go6976, a PKCalpha/beta isozyme inhibitor, inhibited PMA-induced activation of the MMP-9 promoter, as did transient transfection with PKCalpha antisense oligonuclotides. PMA activated NF-kappaB by phosphorylating IkappaB in these cells and this was also inhibited by GF109203X and Go6976, suggesting that PKCa acts as an upstream regulator of NF-kappaB in PMA-induced MMP-9 induction. Our results indicate that a "PKCalpha-NF- kappaB"-dependent cascade is involved in the signaling leading to PMA-induced MMP-9 expression in the lung epithelium.  相似文献   

7.
8.
The migration of vascular smooth muscle cells (VSMCs) into the intima, an important step in injury-induced neointimal hyperplasia, requires the activation of nuclear factor-kappaB (NF-kappaB) and the consequent up-regulation of matrix metalloproteinase-9 (MMP-9). This study was undertaken to test for a possible effect of alpha-lipoic acid (ALA), a potent inhibitor of NF-kappaB, on MMP-9 expression. ALA inhibited high-glucose- and TNF-alpha-stimulated VSMC migrations in vitro. It also inhibited high-glucose- and TNF-alpha-induced increases in MMP-9 expression. The activity of MMP-9-promoter constructs with mutations in the NF-kappaB binding site was not inhibited by ALA, indicating an involvement of the NF-kappaB signaling pathway in the ALA-specific inhibition of MMP-9. These data suggest the possibility that ALA may be useful for the prevention of neointimal hyperplasia after angioplasty, by inhibiting the NF-kappaB/MMP-9 pathway, especially with hyperglycemia.  相似文献   

9.
Intestinal ischemia-reperfusion (I/R) is an important event in the pathogenesis of multiple organ dysfunction syndrome (MODS). The aim of this study is to determine the effects of ginsenoside Rb1 on liver injury induced by intestinal I/R in rats. Adult male Wistar rats were randomly divided into four groups: (1) a control, sham-operated group (sham group); (2) an intestinal I/R group subjected to 1 h intestinal ischemia and 2 h reperfusion (I/R group); (3) a group treated with 20 mg/kg ginsenoside Rb1 before reperfusion (Rb1-20 group); and (4) a group treated with 40 mg/kg ginsenoside Rb1 before reperfusion (Rb1-40 group). Liver and intestinal histology was observed. Aspartate aminotransferase (AST), alanine aminotransferase (ALT) level in serum and malondialdehyde (MDA) level in intestinal tissues were measured. Myeloperoxidase (MPO), TNF-α, MDA level and immunohistochemical expression of NF-κB and intracellular adhesion molecale-1 (ICAM-1) in liver tissues was assayed. In addition, a western blot analysis of liver NF-κB expression was performed. Results indicated intestinal I/R induced intestinal and liver injury, which was characterized by increase of AST and ALT in serum, MDA level in intestine, MPO, TNF-α and MDA level and ICAM-1 and NF-κB expression in the liver tissues. Ginsenoside Rb1 (20, 40 mg/kg) ameliorated liver injury, decreased MPO, TNF-α and MDA level, NF-κB and ICAM-1 expression in liver tissues. In conclusion, ginsenoside Rb1 ablated liver injury induced by intestinal I/R by inhibiting NF-κB activation.  相似文献   

10.
CD98, a disulfide-linked 125-kDa heterodimeric type II transmembrane glycoprotein, regulates beta1 integrin- mediated cell adhesion. However, the molecular mechanisms underlying CD98-mediated activation of beta1 integrin are presently unclear. In this study, the effects of CD98 signaling on the expression and clustering of beta1 integrin were investigated. Activation of CD98 augmented surface expression of beta1 integrin on MCF-7 cells. Cross-linking CD98 induced clustering of beta1 integrins. Inhibition of phosphorylation of focal adhesion kimase (FAK) by PP2, an inhibitor of Src family kinase, reduced cell-extracellular matrix adhesion, but not surface expression and clustering of beta1 integrin on MCF-7 cells. This result was confirmed by over-expression of dominant negative forms of FAK. In addition, phalloidin or cytochalasin D inhibited CD98-mediated induction of cell-ECM adhesion, but not surface expression and clustering of beta1 integrins. The inhibitory effects of PP2, cytochalasin D or phalloidin on CD98-stimulated cell adhesion were diminished by pretreatment of cells with Mn2+, which is shown to induce conformational change of integrins. These results provide the first evidence that CD98 activation increases not only beta1 integrin affinity but also its surface expression and clustering and the latter is independent of FAK/Src and cytoskeleton.  相似文献   

11.
Industrially, after the removal of oil from perilla seeds (PS) by screw-type compression, the large quantities of residual perilla seed meal (PSM) becomes non-valuable waste. Therefore, to increase the health value and price of PS and PSM, we focused on the biological effects of perilla seed oil (PSO) and rosmarinic acid-rich fraction (RA-RF) extracted from PSM for their role in preventing oxidative stress and inflammation caused by TNF-α exposure in an A549 lung adenocarcinoma culture model. The A549 cells were pretreated with PSO or RA-RF and followed by TNF-α treatment. We found that PSO and RA-RF were not toxic to TNF-α-induced A549 cells. Both extracts significantly decreased the generation of reactive oxygen species (ROS) in this cell line. The mRNA expression levels of IL-1β, IL-6, IL-8, TNF-α, and COX-2 were significantly decreased by the treatment of PSO and RA-RF. The Western blot indicated that the expression of MnSOD, FOXO1, and NF-κB and phosphorylation of JNK were also significantly diminished by PSO and RA-RF treatment. The results demonstrated that PSO and RA-RF act as antioxidants to scavenge TNF-α induced ROS levels, resulting in decreased the expression of MnSOD, FOXO1, NF-κB and JNK signaling pathway in a human lung cell culture exposed to TNF-α.  相似文献   

12.
Rutin, a glycoside of flavonol, inhibits osteoclast formation induced by receptor activator of NF-kappaB ligand (RANKL) in bone marrow-derived macrophages. It reduces reactive oxygen species produced by RANKL and its inhibitory effect results from reduced levels of TNF-alpha. Rutin also lowers NF-kappaB activation in response to RANKL.  相似文献   

13.
Inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, known as statins, are widely used for primary and secondary prevention of coronary artery atherosclerosis. Pathogenesis of atherosclerosis is multistep processes where transendothelial migration of various leukocytes including monocytes is a crucial step. Interferon-gamma (IFN-gamma) contributes in this process by activating macrophages and T-lymphocytes, and by inducing adhesion molecules in vascular endothelial and smooth muscle cells. In this study we investigated the expression of intercellular cell adhesion molecule-1 (ICAM-1) in transformed endothelial cell line ECV304 cells as influenced by lovastatin, tumor necrosis factor-alpha (TNF-alpha) and IFN-gamma. Results show that lovastatin suppresses expression of ICAM-1 by inhibiting the IFN-gamma-induced extracellular signal-regulated kinase (ERK) p44/p42-STAT1 signaling pathway. In cells treated with lovastatin and IFN-gamma, ICAM-1 was expressed at a lower level than in cells treated with IFN-gamma alone. However, lovastatin does not reduce TNF-alpha induced expression of ICAM-1. A similar result was observed in cells treated with the MEKK inhibitor PD98059 and IFN-gamma. Cis-acting DNA sequence elements were identified in the 5'-flanking region of the ICAM-1 promoter that mediate inhibition by lovastatin; these sequences map to the IFN-gamma activated site which also binds the STAT1 homodimer. However, lovastatin did not inhibit IFN-gamma-mediated induction of the Y701 phosphorylated form of STAT1. But lovastatin does inhibit the IFN-gamma-mediated phosphorylation of ERK1/ERK2 (T202/Y204) and S727 phosphorylation of STAT1. TNF-alpha does not induce phosphorylation of ERK1/ERK2 and S727 in ECV304 and smooth muscle cells. The results provide the evidences that statins may have beneficial effects by inhibiting IFN-gamma action in atherosclerotic process  相似文献   

14.
15.
TNF-related apoptosis-inducing ligand (TRAIL/Apo- 2L), a newly identified member of the TNF family promotes apoptosis by binding to the transmembrane receptors (TRAIL-R1/DR4 and TRAIL-R2/DR5). TRAIL known to activate NF-kappaB in number of tumor cells including A549 (wt p53) and NCI-H1299 (null p53) lung cancer cells exerts relatively selective cytotoxic affects to the human tumor cell lines without much effect on the normal cells. We set out to identify an agent that would sensitize lung cancer cells to TRAIL-induced apoptosis through inhibition of NF-kappaB activation. We found that triptolide, an oxygenated diterpene extracted and purified from the Chinese herb Tripterygium wilfordii sensitized A549 and NCI-H1299 cells to TRAIL-induced apoptosis through inhibition of NF-kappaB activation. Pretreatment with MG132 which is a well-known NF-kappaB inhibitor by blocking degradation of IkappaBalpha also greatly sensitized lung cancer cells to TRAIL-induced apoptosis. Triptolide did not block DNA binding of NF-kappaB activated by TRAIL as in the case of TNF-alpha. It has been already proven that triptolide blocks transactivation of p65 which plays a key role in NF-kappaB activation. These observations suggest that triptolide may be a potentially useful drug to enhance TRAIL-induced tumor killing in lung cancer.  相似文献   

16.
α-Cubebenoate derived from Schisandra chinensis has been reported to possess anti-allergic, anti-obesity, and anti-inflammatory effects and to exhibit anti-septic activity, but its anti-cancer effects have not been investigated. To examine the anti-cancer activity of α-cubebenoate, we investigated its effects on the proliferation, apoptosis, and metastasis of CT26 cells. The viabilities of CT26 cells (a murine colorectal carcinoma cell line) and HCT116 cells (a human colon cancer cell line) were remarkably and dose-dependently diminished by α-cubebenoate, whereas the viability of CCD-18Co cells (a normal human fibroblast cell line) were unaffected. Furthermore, α-cubebenoate treatment increased the number of apoptotic CT26 cells as compared with Vehicle-treated cells and increased Bax, Bcl-2, Cas-3, and Cleaved Cas-3 protein levels by activating the MAP kinase signaling pathway. α-Cubebenoate also suppressed CT26 migration by regulating the PI3K/AKT signaling pathway. Furthermore, similar reductions were observed in the expression levels of some migration-related proteins including VEGFA, MMP2, and MMP9. Furthermore, reduced VEGFA expression was found to be accompanied by the phosphorylations of FAK and MLC in the downstream signaling pathway of adhesion protein. The results of the present study provide novel evidence that α-cubebenoate can stimulate apoptosis and inhibit metastasis by regulating the MAPK, PI3K/AKT, and FAK/MLC signaling pathways.  相似文献   

17.
Monocyte chemoattractant protein-1 (MCP1) plays a key role in monocyte/macrophage infiltration to the sub-endothelial space of the blood vessel wall, which is a critical initial step in atherosclerosis. In this study, we examined the intracellular signaling pathway of IL-1β-induced MCP1 expression using various chemical inhibitors. The pretreatment of a phosphatidylcholine (PC)-specific PLC (PC-PLC) inhibitor (D609), PKC inhibitors, or an NF-κB inhibitor completely suppressed the IL-1β-induced MCP1 expression through blocking NF-κB translocation to the nucleus. Pretreatment with inhibitors of tyrosine kinase or PLD partially suppressed MCP1 expression and failed to block nuclear NF-κB translocation. These results suggest that IL-1β induces MCP1 expression through activation of NF-κB via the PC-PLC/PKC signaling pathway.  相似文献   

18.
19.
Recent studies have reported that the cholinergic anti-inflammatory pathway regulates peripheral inflammatory responses via alpha7 nicotinic acetylcholine receptors (alpha7 nAChRs) and that acetylcholine and nicotine regulate the expression of proinflammatory mediators such as TNF-alpha and prostaglandin E2 in microglial cultures. In a previous study we showed that ATP released by beta-amyloid-stimulated microglia induced reactive oxygen species (ROS) production, in a process involving the P2X(7) receptor (P2X(7)R), in an autocrine fashion. These observations led us to investigate whether stimulation by nicotine could regulate fibrillar beta amyloid peptide (1-42) (fAbeta1-42)-induced ROS production by modulating ATP efflux-mediated Ca(2+) influx through P2X(7)R. Nicotine inhibited ROS generation in fAbeta(1-42)-stimulated microglial cells, and this inhibition was blocked by mecamylamine, a non-selective nAChR antagonist, and a-bungarotoxin, a selective alpha7 nAChR antagonist. Nicotine inhibited NADPH oxidase activation and completely blocked Ca(2+) influx in fAbeta(1-42)-stimulated microglia. Moreover, ATP release from fAbeta(1-42)-stimulated microglia was significantly suppressed by nicotine treatment. In contrast, nicotine did not inhibit 2',3'-O-(4-benzoyl)-benzoyl ATP (BzATP)-induced Ca(2+) influx, but inhibited ROS generation in BzATP-stimulated microglia, indicating an inhibitory effect of nicotine on a signaling process downstream of P2X(7)R. Taken together, these results suggest that the inhibitory effect of nicotine on ROS production in fAbeta1-42-stimulated microglia is mediated by indirect blockage of ATP release and by directly altering the signaling process downstream from P2X(7)R.  相似文献   

20.
Redox adaptation is an important concept that explains the mechanisms by which cancer cells survive under persistent endogenous oxidative stress and become resistant to certain anticancer agents. To investigate this concept, we determined the expression levels of peroxiredoxins (Prxs), antioxidant enzymes in drug-resistant non-small cell lung carcinoma cells. Prx II was remarkably increased only in A549/GR (gefitinib-resistant) cells compared with A549 cells, consistent with methylation/demethylation. Prx II was highly methylated in the A549 cells but was demethylated in the A549/GR cells. The elevated expression of Prx II resulted in the downregulation of reactive oxygen species (ROS) and cell death and upregulation of cell cycle progression in the A549/GR cells. When Prx II mRNA in the A549/GR cells was knocked down, the levels of ROS and apoptosis were significantly recovered to the levels of the controls. In addition, signaling molecules involved in apoptosis were increased in the A549/GR-shPrx II cells. There was no difference in the expression of MAPK/ERK between the A549/GR cells and A549/GR-shPrx II cells, but the phosphorylation of JNK was increased in the A549/GR cells and was markedly decreased in the A549/GR-shPrx II cells. Colony number and tumor growth were significantly decreased in the A549/GR-shPrx II cells compared with the A549/GR cells. Our findings suggest that Prx II has an important role in cancer cell survival via the modulation of signaling molecules involved in apoptosis and the phosphorylation of JNK by the downregulation of ROS levels in A549/GR cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号