首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The wetting/dewetting behavior of thin films of lightly sulfonated low molecular weight polystyrene (SPS) ionomers spin-coated onto silica surfaces were studied using atomic force microscopy (AFM), contact angle measurements, and electron microscopy. The effects of the sulfonation level, the choice of the cation, the solvent used to spin-coat the films, and the molecular weight of the ionomer were investigated. Small angle X-ray scattering was used to determine the bulk microstructure of the films. The addition of the sulfonate groups suppressed the dewetting behavior of the PS above its glass transition temperature, e.g. no dewetting occurred even after 240 h of annealing at 120 degrees C. Increasing the sulfonation level led to more homogeneous and smoother surfaces. The choice of the cation used affected the wetting properties, but not in a predictable manner. When tetrahydrofuran (THF) or a THF/methanol mixed solvent was used for spin-casting, a submicron-textured surface morphology was produced, which may be a consequence of spinodal decomposition of the film surface during casting. Upon annealing for long times, the particles coalesced into a coherent, nonwetted film.  相似文献   

2.
To develop stimuli-responsive ultrathin polymer films on a solid substrate, a novel photo-cross-linkable polymer with both temperature- and pH-responsive properties was prepared. The photoreactive 4-aminobenzophenone (BP) was introduced onto the side groups of poly(N-isopropylaclylamide-co-2-carboxyisopropylaclylamide) [poly(NIPAAm-co-CIPAAm)]. This copolymer was designed for highly random sequences of comonomers. After the formation of spin-coated polymer films on a solid substrate, UV-light irradiation started the cross-linking reaction. The spin-coating processes and stability of the polymer films were quantitatively monitored by a quartz crystal microbalance (QCM), and the thickness was estimated using an atomic force microscope (AFM). These measurements confirmed the formation of a very plain polymer film, and the film thickness was precisely controlled by the concentration of the polymer solution used for spin coating. Moreover, the obtained films showed a high stability due to the cross-liking reaction and UV irradiation. Cyclic voltammetry using potassium ferricyanide revealed that the ions could permeate the photo-cross-linked ultrathin polymer films. The permeability of the ultrathin hydrogel films was dramatically changed by varying the pH and temperature of the aqueous media. These observations suggest that the preparation of isopropylacrylamide-based stimuli-responsive ultrathin hydrogel films is possible.  相似文献   

3.
将星形支化结构的聚己内酯, 包括六臂星形聚己内酯(HPCL)和树枝状星形聚己内酯(DPCL), 以及线形聚己内酯(LPCL)室温旋涂于云母片上,通过原子力显微镜(AFM)观察分子结构对星形支化聚己内酯超薄膜的润湿-去润湿性质的影响. 在旋涂过程中, 薄膜的形成受去润湿和结晶竞争的控制. 差示扫描量热(DSC)测试结果表明, 当相对分子质量相同时, 结晶性的顺序是: DPCL最弱, HPCL次弱, LPCL最强. 依据分子结构和相对分子质量的影响, 即去润湿和结晶竞争的结果, LPCL、HPCL和DPCL的超薄膜表现出不同的表面形态, 包括尺寸不同的完整的球晶、开口的球晶、树枝状片、分散的颗粒.  相似文献   

4.
A multilayer LB film and a casting film of reversed duckweed polymer ES-3 on Au-evaporated glass slides were investigated by Fourier Transform infrared grazing reflection-absorption spectroscopy. It is found that the two kinds of ordered ultrathin films have different orientation of alkyl chains, nearly perpendicular to the substrate surface for the LB film while rather tilted for the casting film. The studies on their thermal transition behaviors indicate that both of the films have three phase transition processes, respectively, occurring near 65, 105 and 140 degrees C for the former while near 80, 105 and 140 degrees C for the latter, but show different transition behavior in the each corresponding transition process. It is referred that at room temperature there are island-like domain structures formed in the LB film, but no ones in the casting film; however, the latter can form the domain structures between the first two transition points due to the desorption of solvents. The formation of domain structure seems to play two important roles, one of which is to make alkyl chains more perpendicular to the substrate surface, and the other to make alkyl chains more packed closely. Thermal cyclic experiments reveal that neither of the films could return to its original state after thermal cyclic treatment up to the temperature, which is above the third transition point, although its alkyl chain becomes highly ordered again.  相似文献   

5.
The self-organization behavior of a wedge-shaped surfactant, disodium-3,4,5-tris(dodecyloxy)phenylmethylphosphonate, was studied in Langmuir monolayers (at the air-water interface), Langmuir-Blodgett (LB) monolayers and multilayers, and films adsorbed spontaneously from isooctane solution onto a mica substrate (self-assembled films). This compound forms an inverted hexagonal lyotropic liquid crystal phase in the bulk and in thick adsorbed films. Surface pressure isotherm and Brewster angle microscope (BAM) studies of Langmuir monolayers revealed three phases: gas (G), liquid expanded (LE), and liquid condensed (LC). The surface pressure-temperature phase diagram was determined in detail; a triple point was found at approximately 10 degrees C. Atomic force microscope (AFM) images of LB monolayers transferred from various regions of the phase diagram were consistent with the BAM images and indicated that the LE regions are approximately 0.5 nm thinner than the LC regions. AFM images were also obtained of self-assembled films after various adsorption times. For short adsorption times, when monolayer self-assembly was incomplete, the film topography indicated the coexistence of two distinct monolayer phases. The height difference between these two phases was again 0.5 nm, suggesting a correspondence with the LE/LC coexistence observed in the Langmuir monolayers. For longer immersion times, adsorbed multilayers assembled into highly organized periodic arrays of inverse cylindrical micelles. Similar periodic structures, with the same repeat distance of 4.5 nm, were also observed in three-layer LB films. However, the regions of organized periodic structure were much smaller and more poorly correlated in the LB multilayers than in the films adsorbed from solution. Collectively, these observations indicate a high degree of similarity between the molecular organization in Langmuir layers/LB films and adsorbed self-assembled films. In both cases, monolayers progress through an LE phase, into LE/LC coexistence, and finally into LC phase as surface density increases. Following the deposition of an additional bilayer, the film reorganizes to form an array of inverted cylindrical micelles.  相似文献   

6.
Reflection–absorption infrared spectroscopy was used to study the crystallization behavior of poly(ethylene terephthalate) (PET) ultrathin films. The crystallinity of ultrathin films was estimated by the fraction of trans conformers of PET. The isothermal and nonisothermal crystallization kinetics of ultrathin films with different thicknesses were investigated. The thinner PET film showed slower kinetics during isothermal crystallization than the thicker film. Moreover, the final crystallinity of films with various thicknesses were reduced with decreasing thickness. An Avrami equation was used to fit the acquired results. The Avrami exponents decreased with the film thickness. As for the nonisothermal crystallization, the cold‐crystallization starting temperature shifted to a lower temperature as the film thickness increased. The influence of the substrate on the crystallization kinetics of the films was also studied. The half‐crystallization times and final crystallinities of ultrathin films adsorbed onto a self‐assembled‐monolayer‐treated surface and an untreated substrate were clearly different, although their thickness dependence was similar. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4440–4447, 2004  相似文献   

7.
The structural evolution of a single-layer latex film during annealing was studied via grazing incidence ultrasmall-angle X-ray scattering (GIUSAXS) and atomic force microscopy (AFM). The latex particles were composed of a low-Tg (-54 degrees C) core (n-butylacrylate, 30 wt %) and a high-Tg (41 degrees C) shell (t-butylacrylate, 70 wt %) and had an overall diameter of about 500 nm. GIUSAXS data indicate that the q(y) scan at q(z) = 0.27 nm(-1) (out-of-plane scan) contains information about both the structure factor and the form factor. The GIUSAXS data on latex films annealed at various temperatures ranging from room temperature to 140 degrees C indicate that the structure of the latex thin film beneath the surface changed significantly. The evolution of the out-of-plane scan plot reveals the surface reconstruction of the film. Furthermore, we also followed the time-dependent behavior of structural evolution when the latex film was annealed at a relatively low temperature (60 degrees C) where restructuring within the film can be followed that cannot be detected by AFM, which detects only surface morphology. Moreover, compared to AFM studies GIUSAXS provides averaged information covering larger areas.  相似文献   

8.
Formation of stable thin films of mixed xyloglucan (XG) and alginate (ALG) onto Si/SiO(2) wafers was achieved under pH 11.6, 50mM CaCl(2), and at 70 degrees C. XG-ALG films presented mean thickness of (16+/-2)nm and globules rich surface, as evidenced by means of ellipsometry and atomic force microscopy (AFM), respectively. The adsorption of two glucose/mannose-binding seed (Canavalia ensiformis and Dioclea altissima) lectins, coded here as ConA and DAlt, onto XG-ALG surfaces took place under pH 5. Under this condition both lectins present positive net charge. ConA and DAlt adsorbed irreversibly onto XG-ALG forming homogenous monolayers approximately (4+/-1)nm thick. Lectins adsorption was mainly driven by electrostatic interaction between lectins positively charged residues and carboxylated (negatively charged) ALG groups. Adhesion of four serotypes of dengue virus, DENV (1-4), particles to XG-ALG surfaces were observed by ellipsometry and AFM. The attachment of dengue particles onto XG-ALG films might be mediated by (i) H bonding between E protein (located at virus particle surface) polar residues and hydroxyl groups present on XG-ALG surfaces and (ii) electrostatic interaction between E protein positively charged residues and ALG carboxylic groups. DENV-4 serotype presented the weakest adsorption onto XG-ALG surfaces, indicating that E protein on DENV-4 surface presents net charge (amino acid sequence) different from E proteins of other serotypes. All four DENV particles serotypes adsorbed similarly onto lectin films adsorbed. Nevertheless, the addition of 0.005mol/L of mannose prevented dengue particles from adsorbing onto lectin films. XG-ALG and lectin layers serve as potential materials for the development of diagnostic methods for dengue.  相似文献   

9.
采用原子力显微镜研究了聚(苯乙烯嵌-乙烯/丁烯嵌-苯乙烯)(SEBS)和聚甲基丙烯酸甲酯(PMMA)共混物不同溶剂旋转涂膜的表面形态和相分离行为。结果表明,用共混物的氯仿溶液旋转涂膜,可见明显的共混物的宏观相分离和SEBS的微观相分离形态。改变选择性溶剂可使旋涂膜具有不同的均匀度和形态结构,其相区的尺寸和形状相差甚大,有海岛型、网状、双连续状结构。AFM显示用环己烷/丁酮混合溶剂旋转涂膜,共混物的相分离最为彻底;用选择性溶剂氯仿时次之,但有明显的相分离;对SEBS和PMMA均无选择性的单一溶剂或混合溶剂则无明显相分离。  相似文献   

10.
The adsorption of poly(N-isopropylacrylamide) (PNIPAAM), a well known thermosensitive polymer, on glass was investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The polymer was dissolved in water at low (0.02 g/L) and high (2 g/L) concentration and the tested temperatures were below (25 degrees C) and above (50 degrees C) the lower critical solubility temperature (LCST). Whatever the conditions, a smooth layer of adsorbed molecules spread along the surface was observed. The thickness was about twice higher for high concentration compared to low concentration. The cohesion in the adsorbed layer, as revealed by scraping tests performed by AFM, was higher above the LCST than below the LCST. On top of this adsorbed layer, single-chain coils, globules, or aggregates were present, depending on concentration and temperature. The observation of these additional adsorbed entities was poorly reproducible, presumably due to the lack of shear control upon rinsing. These results emphasize the importance of the characterization of surface morphology to interpret amounts of adsorbed polymers.  相似文献   

11.
Thermal stability of facetted Pt nanocrystals on amorphous silica support films was investigated using in situ transmission electron microscopy in a temperature range between 25 and 800 degrees C. The particles started to change their shapes at approximately 350 degrees C. Above 500 degrees C, the particles spread on the support film with increasing temperature, rather than becoming more spherical. Such temperature-induced wetting of Pt nanoparticles on silica surface can be attributed to the interfacial mixing of Pt and SiO(2) and the resulting negative interface energy.  相似文献   

12.
Thin and ultrathin films of polyethylene of variable thickness are obtained from aqueous dispersions of prefabricated nanoscale crystals by spin‐coating. Continuous films with a thickness of only 15 nm, up to 220 nm, homogeneous over hundreds of μm, or assembled discontinuous monolayers of flat‐on lamella particles were prepared, depending on the solids content of the dispersion employed, as revealed by AFM and TEM. The morphology of melt‐recrystallized films was not affected by the surfactant present. Homogeneous continuous films without undesirable dewetting were retained upon melting and recrystallization of the films upon cooling, composed of polygonal spherulites for a thicker film (220 nm), randomly grown edge‐on lamella for a 40 nm film, and dominant flat‐on lamella for a 15 nm thick film. Annealing below Tm resulted in lamella thickening, without changes of crystal orientation or structure of the particle assemblies for discontinuous monolayers. Surfactant adsorbed to the nanocrystals in the aqueous dispersion desorbs at least partially during formation of the nascent films, and upon annealing below the melting point surfactant migrates to the film‐air interface to form aggregates, which can be removed by rinsing, during which the film stays intact and structurally unaltered as revealed, amongst others, by water contact angles. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6420–6432, 2009  相似文献   

13.
We observed by using atomic force microscope (AFM) phospholipid (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) monolayers on mica being annealed and cooled to a selection of temperatures through steps of 2-4 degrees C/min. The annealed phospholipid monolayers started to disappear at 45-50 degrees C and disappeared completely above 60-63 degrees C under AFM observation. The phospholipid monolayers reformed when the samples were cooled below 60 degrees C and developed from fractal into compact monolayer films with decreasing temperatures. Simultaneously the height of the reformed phospholipid films also increased with decreasing temperatures from 0.4 nm to the value before annealing. The observed thermal features are attributed to a phase-transition process that upon heating to above 45-50 degrees C, the lipids condensed in the monolayers transform into a low-density expanded phase in which the lipids are invisible to AFM, and the transformation continues and completes at 60-63 degrees C. The lipid densities of the expanded phase inferred from the dissociated area of the condensed phase are observed to be a function of the temperature. The behavior contrasts with a conventional first-order phase transition commonly seen in the Langmuir films. The temperature-dependent height and shape of the reformed phospholipid films during cooling are argued to arise from the adjustment of the packing and molecular tilting (with respect to the mica surface) of the phospholipids in order to accommodate more condensed phospholipids.  相似文献   

14.
In order to elaborate alternate layer-by-layer assembly as a means to prepare ultrathin films, details of conventional polyion assemblies have been quantitatively analyzed by quartz crystal microbalance (QCM) technique with the aid of scanning electron microscopy (SEM) and atomic force microscopy (AFM). The alternate adsorption of poly(styrenesulfonate) (PSS) and poly(allylamine) (PAM) onto oppositely-charged surfaces displayed the pseudo first-order kinetics and was saturated within 10–20 min at pH 3 and 22°C. It was revealed that drying at every step increased the thickness of adsorbed films due to enhanced surface roughness of the films. Therefore, frequent drying is not profitable for preparing films in a good quality. Non-contact AFM observation revealed that drying of the film with nitrogen stream, forced polymer chains to align to one direction with increasing surface roughness. In contrast, water washing between the consecutive adsorptions was effective for successful alternate adsorption. About 10% of an adsorbed polyion layer was removed by 5-min water washing probably due to removal of the loosely-attached materials.  相似文献   

15.
Vanadium dioxide (VO2) thin films were fabricated on single crystal Si (100) substrates by sol–gel method, including a process of annealing a vanadium pentoxide (V2O5) gel precursor at different temperatures. The crystalline structure and morphology of the films were investigated by XRD, FE-SEM and AFM, indicating that the films underwent the grain growth, agglomeration and grain refinement process with increased annealing temperatures. The film annealed at 500 °C exhibits the formation of VO2 phase with a strong (011) preferred orientation and high crystallinity, the surface of the film is uniform and compact with a grain size of about 120 nm. Meanwhile, the film exhibits excellent phase transition properties, with a decrease of transmittance from 35.5 to 2.5% at λ = 25 μm and more than 3 orders of resistivity magnitude variation bellow and above the phase transition temperature. The phase transition temperature is evaluated at 60.4 °C in the heating transition and 55.8 °C in the cooling transition. Furthermore, the phase transition property of the VO2 film appears to be able to remain stable over repetitive cycles 100 times.  相似文献   

16.
Interfacial elasticity and "dynamic" surface pressure isotherms were measured for interfaces between a dispersed water phase and a continuous phase of asphaltenes, toluene, and heptane. The interfacial modulus is a function of asphaltene concentration and in all cases reached a maximum at an asphaltene concentration of approximately 1 kg/m(3). The modulus increased significantly as the interface aged and slightly as the heptane content increased to a practical limit of 50 vol%. The modulus was approximately the same at 23 and 60 degrees C. The modulus correlated with the inverse of the initial compressibility determined from surface pressure isotherms. The surface pressure isotherms also indicated that a phase transition occurred as the interface was compressed leading to the formation of low compressibility films. Crumpling was observed upon further compression. The phase transition shifted to a higher film ratio with an increase in heptane content and interface age. Asphaltene concentration and temperature (23 and 60 degrees C) has little effect on the surface pressure isotherms. The surface pressure and elasticity measurements are consistent with the gradual formation of a cross-linked asphaltene network on the interface.  相似文献   

17.
Interfacial glass transition temperature (T(g)) profiles in spin cast, ultrathin films of polystyrene and derivatives were investigated using shear-modulated scanning force microscopy. The transitions were measured as a function of film thickness (delta), molecular weight, and crosslinking density. The T(g)(delta) profiles were nonmonotonic and exhibited two regimes: (a) a sublayer extending about 10 nm from the substrate, with T(g) values lowered up to approximately 10 degrees C below the bulk value, and (b) an intermediate regime extending over 200 nm beyond the sublayer, with T(g) values exceeding the bulk value by up to 10 degrees C. Increasing the molecular weight was found to shift the T(g)(delta) profiles further from the substrate interface, on the order of 10 nm/kDa. Crosslinking the precast films elevated the absolute T(g) values, but had no effect on the spatial length scale of the T(g)(delta) profiles. These results are explained in the context of film preparation history and its influence on molecular mobility. Specifically, the observed rheological anisotropy is interpreted based on the combined effects of shear-induced structuring and thermally activated interdiffusion.  相似文献   

18.
A UV-visible technique is used to study the evolution of transparency during film formation from latex particles. Latex particles with high and low molecular weight (HM and LM) polymethyl methacrylate (PMMA) are used to prepare films. Two sets of films with different latex content were prepared from HM and LM particles separately, by annealing PMMA particles above the glass transition temperature. Transmitted photon intensity, I(tr), from HM and LM films increased as the annealing temperature was increased. The increase in the transmitted photon intensity is attributed to the latex content (film thickness) for the annealed film samples. It is suggested that as the latex particles are packed (film thickness is increased) fewer voids or cracks are formed in the films. Positive and negative absorption coefficients are measured below and above 210 and 180 degrees C annealing temperatures for the HM and LM films. Packing coefficients are obtained for films in various latex contents. It is observed that LM particles are packed much easier than HM particles. Copyright 2001 Academic Press.  相似文献   

19.
The temperature dependences of diffuse reflection spectra and the polarization of light reflected from ultrathin Langmuir films based on liquid crystals are studied. The results are compared to the experimental data obtained on thicker liquid films. The dependences of the electric capacity of metal-film-metal structures on temperature are measured. The maximum for ultrathin films lies near 75°C, indicating the occurrence of a ferroelectric phase transition. Features in the intensity and polarization of the reflected light are registered at the phase transition temperature. It is concluded that the generality of the results obtained using samples of both types indicates the existence of a mesomorphic phase in Langmuir films. The observed differences could be associated with either dimensional effects or differences in the structures of the films.  相似文献   

20.
The change in optical properties of colloidal gold upon aggregation has been used to develop an experimentally convenient colorimetric method to study the interfacial phase transition of an elastin-like polypeptide (ELP), a thermally responsive biopolymer. Gold nanoparticles, functionalized with a self-assembled monolayer (SAM) of mercaptoundecanoic acid onto which an ELP was adsorbed, exhibit a characteristic red color due to the surface plasmon resonance (SPR) of individual colloids. Raising the solution temperature from 10 degrees C to 40 degrees C thermally triggered the hydrophilic-to-hydrophobic phase transition of the adsorbed ELP resulting in formation of large aggregates due to interparticle hydrophobic interaction. Formation of large aggregates caused a change in color of the colloidal suspension from red to violet due to coupling of surface plasmons in aggregated colloids. The surface phase transition of the ELP was reversible, as seen from the reversible change in color upon cooling the suspension to 10 degrees C. The formation of colloidal aggregates due to the interfacial phase transition of adsorbed ELP was independently verified by dynamic light scattering of ELP-modified gold colloids as a function of temperature. Colloidal SPR provides a simple and convenient colorimetric method to study the influence of the solution environment, interfacial properties, and grafting method on the transition properties of ELPs and other environmentally responsive polymers at the solid-water interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号