首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Many diagnostic tests in a conventional clinical laboratory are performed on blood plasma because changes in its composition often reflect the current status of pathological processes throughout the body. Recently, a significant research effort has been invested into the development of microfluidic paper-based analytical devices (μPADs) implementing these conventional laboratory tests for point-of-care diagnostics in resource-limited settings. This paper describes the use of red blood cell (RBC) agglutination for separating plasma from finger-prick volumes of whole blood directly in paper, and demonstrates the utility of this approach by integrating plasma separation and a colorimetric assay in a single μPAD. The μPAD was fabricated by printing its pattern onto chromatography paper with a solid ink (wax) printer and melting the ink to create hydrophobic barriers spanning through the entire thickness of the paper substrate. The μPAD was functionalized by spotting agglutinating antibodies onto the plasma separation zone in the center and the reagents of the colorimetric assay onto the test readout zones on the periphery of the device. To operate the μPAD, a drop of whole blood was placed directly onto the plasma separation zone of the device. RBCs in the whole blood sample agglutinated and remained in the central zone, while separated plasma wicked through the paper substrate into the test readout zones where analyte in plasma reacted with the reagents of the colorimetric assay to produce a visible color change. The color change was digitized with a portable scanner and converted to concentration values using a calibration curve. The purity and yield of separated plasma was sufficient for successful operation of the μPAD. This approach to plasma separation based on RBC agglutination will be particularly useful for designing fully integrated μPADs operating directly on small samples of whole blood.  相似文献   

2.
We present a prototype microfluidic device developed for the continuous dielectrophoretic (DEP) fractionation and purification of sample suspensions of biological cells. The device integrates three fully functional and distinct units consisting of an injector, a fractionation region, and two outlets. In the sheath and sample injection ports, the cell sample are hydrodynamically focused into a stream of controlled width; in the DEP fractionation region, a specially shaped nonuniform (isomotive) electric field is synthesized and employed to facilitate the separation, and the sorted cells are then delivered to two sample collection ports. The microfluidic behavior of the injector region was simulated and then experimentally verified. The operation and performance of the device was evaluated using yeast cells as model biological particles. Issues relating to the fabrication and operation of the device are discussed in detail. Such a device takes a significant step towards an integrated lab-on-a-chip device, which could interface/integrate to a number of other on-chip components for the device to undertake the whole laboratory procedure.  相似文献   

3.
Chen X  Cui D  Liu C  Li H  Chen J 《Analytica chimica acta》2007,584(2):237-243
A novel integrated microfluidic device that consisted of microfilter, micromixer, micropillar array, microweir, microchannel, microchamber, and porous matrix was developed to perform sample pre-treatment of whole blood. Cell separation, cell lysis and DNA purification were performed in this miniaturized device during a continuous flow process. Crossflow filtration was proposed to separate blood cells, which could successfully avoid clogging or jamming. After blood cells were lyzed in guanidine buffer, genomic DNA in white blood cells was released and adsorbed on porous matrix fabricated by anodizing silicon in HF/ethanol electrolyte. The flow process of solutions was simulated and optimized. The anodization process of porous matrix was also studied. Using the continuous flow procedure of cell separation, cell lysis and DNA adsorption, average 35.7 ng genomic DNA was purified on the integrated microfluidic device from 1 μL rat whole blood. Comparison with a commercial centrifuge method, the miniaturized device can extract comparable amounts of PCR-amplifiable DNA in 50 min. The greatest potential of this integrated miniaturized device was illustrated by pre-treating whole blood sample, where eventual integration of sample preparation, PCR, and separation on a single device could potentially enable complete detection in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.  相似文献   

4.
5.
A microfluidic device based on electrophoretic transport and electrostatic trapping of charged particles has been developed for continuous capture and concentration of microorganisms from water. Reclaimed and bottled water samples at pH values ranging from 5.2-6.5 were seeded with bacteria (E. coli, Salmonella, and Pseudomonas) and viruses (MS-2 and Echovirus). Negative control and capture experiments were performed simultaneously using two identical devices. Culture based methods were utilized to characterize the capture efficiency as a function of the species type, time, flow rate, and applied electric field. Based on differences between the capture and negative control data, capture efficiencies of 90% to 99% are reported for E. coli, Salmonella, Pseudomonas, and MS-2, while the capture efficiency for Echovirus was between 70% and 80%. Overall, the device exhibits a 16.67 fold sample volume reduction within an hour at 6 mL h(-1) flow rate, resulting in a concentration factor of 14.2 at 85.2% capture efficiency. The device can function either as a filter or a sample concentrator without using any chemical additives. It can function as an integral component of a continuous, microbial capture and concentration system from large volumes of potable water.  相似文献   

6.
A microfluidic device is presented that performs electrophoretic separation coupled with fraction collection. Effluent from the 3.5 cm separation channel was focused via two sheath flow channels into one of seven collection channels. By holding the collection channels at ground potential and varying the voltage ratio at the two sheath flow channels, the separation effluent was directed to either specific collection channels, or could be swept past all channels in a defined time period. As the sum of the voltages applied to the two sheath flow channels was constant, the electric field remained at 275 V/cm during the separation regardless of the collection channel used. The constant potential in the separation channel allowed uninterrupted separation for late-migrating peaks while early-migrating peaks were being collected. To minimize the potential for carryover between fractions, the device geometry was optimized using a three-level factorial model. The optimum conditions were a 22.5° angle between the sheath flow channels and the separation channel, and a 350 μm length of channel between the separation outlet and the fraction channels. Using these optimized dimensions, the device performance was evaluated by separation and fraction collection of a fluorescently labeled amino acid mixture. The ability to fraction collect on a microfluidic platform will be especially useful during automated or continuous operation of these devices or to collect precious samples.  相似文献   

7.
This work describes a microfluidic device integrated with multichamber polymerase chain reaction (PCR) and multichannel separation for parallel genetic analysis. The microdevice consists of three functional units: temperature control, multiple PCR (four chambers PCR), and multiple channel separation (four separation channels, each channel connected to a PCR chamber). Platinum (Pt)/titanium (Ti) microheater was used to ensure homogeneous temperature field, and Pt-chip sensor was used for temperature monitoring. The interface between chip-PCR and chip separation was simplified by connecting the PCR chamber with separation channel directly. After chip-PCR, PCR products were introduced into parallel separation channels for subsequent separation/detection by applying an electric field automatically. This microdevice was successfully applied for detection of pathogens including hepatitis B virus (HBV) and Mycobacterium tuberculosis (MTB), and genotyping of human leucocyte antigen (HLA)-B27 as well, demonstrating the feasibility of the integrated microdevice for parallel genetic analysis.  相似文献   

8.
This paper describes the design, fabrication, and test of a PDMS/PMMA-laminated microfluidic device for an immunosensing biochip. A poly(dimethyl siloxane)(PDMS) top substrate molded by polymer casting and a poly(methyl methacrylate)(PMMA) bottom substrate fabricated by hot embossing are bonded with pressure and hermetically sealed. Two inlet ports and an air vent are opened through the PDMS top substrate, while gold electrodes for electrochemical biosensing are patterned onto the PMMA bottom substrate. The analyte sample is loaded from the sample inlet port to the detection chamber by capillary force, without any external intervening forces. For this and to control the time duration of sample fluid in each compartment of the device, including the inlet port, diffusion barrier, reaction chamber, flow-delay neck, and detection chamber, the fluid conduit has been designed with various geometries of channel width, depth, and shape. Especially, the fluid path has been designed so that the sample flow naturally stops after filling the detection chamber to allow sufficient time for biochemical reaction and subsequent washing steps. As model immunosensing tests for the microfluidic device, functionalizations of ferritin and biotin to the sensing surfaces on gold electrodes and their biospecific interactions with antiferritin antiserum and streptavidin have been investigated. An electrochemical detection method for immunosensing by biocatalyzed precipitation has been developed and applied for signal registration. With the biochip, the whole immunosensing processes could be completed within 30 min.  相似文献   

9.
We demonstrate a micro-electroporation device for cell lysis prior to subcellular analysis. Simple circuit models show that electrical lysis method is advantageous because it is selective towards plasma membrane while leaving organelle membrane undamaged. In addition, miniaturization of this concept leads to negligible heat generation and bubble formation. The designed microdevices were fabricated using a combination of photolithography, metal-film deposition, and electroplating. We demonstrate the electro-lysis of human carcinoma cells in these devices to release the subcellular materials.  相似文献   

10.
A software-programmable microfluidic device for automated biology   总被引:1,自引:0,他引:1  
Fidalgo LM  Maerkl SJ 《Lab on a chip》2011,11(9):1612-1619
Specific-purpose microfluidic devices have had considerable impact on the biological and chemical sciences, yet their use has largely remained limited to specialized laboratories. Here we present a general-purpose software-programmable microfluidic device which is capable of performing a multitude of low- and high-level functions without requiring any hardware modifications. To demonstrate the applicability and modularity of the device we implemented a variety of applications such as a microfluidic display, fluid metering and active mixing, surface immunoassays, and cell culture. We believe that analogously to personal computers, programmable, general-purpose devices will increase the accessibility and advance the pervasiveness of microfluidic technology.  相似文献   

11.
Broadband cavity-enhanced absorption spectroscopy has been used to record, in real time, the absorption spectrum of microlitre volume aqueous phase droplets within a microfluidic chip assembly. Using supercontinuum radiation and broadband coated external mirrors, the full visible spectrum (430 nm < λ < 700 nm) of each passing droplet is acquired in situ at high repetition rates (273 Hz/3.66 ms acquisition time) and high sensitivity (α(min) < 10(-2) cm(-1)). The possibilities for further improvements in sensitivity and acquisition rate using custom designed chips are discussed.  相似文献   

12.
Dutta D  Ramsey JM 《Lab on a chip》2011,11(18):3081-3088
Microchannels in microfluidic devices are frequently chemically modified to introduce specific functional elements or operational modalities. In this work, we describe a miniaturized hydraulic pump created by coating selective channels in a glass microfluidic manifold with a polyelectrolyte multilayer (PEM) that alters the surface charge of the substrate. Pressure-driven flow is generated due to a mismatch in the electroosmotic flow (EOF) rates induced upon the application of an electric field to a tee channel junction that has one arm coated with a positively charged PEM and the other arm left uncoated in its native state. In this design, the channels that generate the hydraulic pressure are interconnected via the third arm of the tee to a field-free analysis channel for performing pressure-driven separations. We have also shown that modifications in the cross-sectional area of the channels in the pumping unit can enhance the hydrodynamic flow through the separation section of the manifold. The integrated device has been demonstrated by separating Coumarin dyes in the field-free analysis channel using open-channel liquid chromatography under pressure-driven flow conditions.  相似文献   

13.
A microfluidic based device has been developed for the continuous separation of polymer microspheres, taking advantage of the flow characteristics of systems. The chip consists of an asymmetric cavity with variable channel width which enables continuous amplification of the particle separation for different size particles within the laminar flow profile. The process has been examined by varying the sample inlet position, the sample to media flow rate ratio, and the total flow rate. This technique can be applied for manipulating both microscale biological and colloidal particles within microfluidic systems.  相似文献   

14.
The flux of platelet agonists into flowing blood is a critical event in thrombosis and hemostasis. However, few in vitro methods exist for examining and controlling the role of platelet agonists on clot formation and stability under hemodynamic conditions. In this paper, we describe a membrane-based method for introducing a solute into flowing blood at a defined flux. The device consisted of a track-etched polycarbonate membrane reversibly sealed between two microfluidic channels; one channel contained blood flowing at a physiologically relevant shear rate, and the other channel contained the agonist(s). An analytical model described the solute flux as a function of the membrane permeability and transmembrane pressure. The model was validated using luciferase as a model solute for transmembrane pressures of 50-400 Pa. As a proof-of-concept, the weak platelet agonist ADP was introduced into whole blood flowing at 250 s(-1) at three fluxes (1.5, 2.4, and 4.4 x 10(-18) mol microm(-2) s(-1)). Platelet aggregation was monitored by fluorescence microscopy during the experiment and the morphology of aggregates was determined by post hoc confocal and electron microscopy. At the lowest flux (1.5 x 10(-18) mol microm(-2) s(-1)), we observed little to no aggregation. At the higher fluxes, we observed monolayer (2.4 x 10(-18) mol microm(-2) s(-1)) and multilayer (4.4 x 10(-18) mol microm(-2) s(-1)) aggregates of platelets and found that the platelet density within an aggregate increased with increasing ADP flux. We expect this device to be a useful tool in unraveling the role of platelet agonists on clot formation and stability.  相似文献   

15.
Zeng HL  Li HF  Wang X  Lin JM 《Talanta》2006,69(1):226-231
A β-cyclodextrin (β-CD)-bonded gel monolithic column polydimethylsiloxane (PDMS) microfluidic device was developed in a simple and feasible way. Before preparation of gel monolithic column in PDMS microchannel, PDMS surface was activated by UV light to create silanol groups, which is an active molecule to covalently bond 3-(trimethoxysilyl)-propyl methacrylate (Bind-Silane) and seal microfluidic device. By the way, Bind-Silane is a bifunctional molecule to link polyacrylamide (PAA) gel and inner wall of PDMS microchannel covalently. Allyl-β-CD was used not only as a multifunctional crosslinker in PAA gel to control the size of the pores, but also as a chiral selector for the enantioseparation. The stability, transferring heat and optical characteristic of the microfluidic device were examined. The separation capability of the gel monolithic column was confirmed by the successful separation of fluorescein isothiocyanate (FITC)-labeled arginine (Arg), glutamine acid (Glu), tryptophan (Try), cysteine (Cysteine) and phenylalanine (Phe) in the PDMS microfluidic device less than 100 s at 36 mm effective separation length. A maximum of 2.06 × 105 theoretical plates was obtained by the potential strength of 490 V/cm. A pair of FITC-labeled dansyl-d,l-threonine (Dns-Thr) was separated absolutely.  相似文献   

16.
Zheng Y  Zhao S  Liu YM 《The Analyst》2011,136(14):2890-2892
Highly active horseradish peroxidase functionalized magnetic nanoparticles were prepared and packed into a microfluidic channel, producing an in-line bioreactor that enabled a sensitive chemiluminescence assay of H(2)O(2). The proposed magnetically active microfluidic device proved useful for chemiluminescence assays of biomedically interesting compounds.  相似文献   

17.
The primary requirement for a mixing operation in droplet-based microfluidic devices is an accurate pairing of droplets of reaction fluids over an extended period of time. In this paper, a novel device for self-synchronous production of droplets has been demonstrated. The device uses a change in impedance across a pair of electrodes introduced due to the passage of a pre-formed droplet to generate a second droplet at a second pair of electrodes. The device was characterised using image analysis. Droplets with a volume of ~23.5 ± 3.1 nl (i.e.~93% of the volume of pre-formed droplets) were produced on applying a voltage of 500 V. The synchronisation efficiency of the device was 83%. As the device enables self-synchronised production of droplets, it has a potential to increase the reliability and robustness of mixing operations in droplet-based microfluidic devices.  相似文献   

18.
A two-layer polymer microfluidic device is presented which creates nine linear dilutions from two input fluid streams mixed in varying volumetric proportions. The linearity of the nine dilutions is conserved when the flow rate is held constant at 1.0 microl min(-1) (R(2) = 0.9995) and when it is varied from 0.5-16 microl min(-1) (R(2) = 0.9998). An analytical expression is presented for designing microfluidic devices with arbitrary numbers of linear dilutions. To demonstrate the efficacy of this device, primary human epidermal keratinocytes (HEK) were stained with nine dilutions of calcein, resulting in a linear spread of fluorescent intensities (R(2) = 0.94). The operating principles of the device can be scaled up to incorporate any number of linear dilutions. This scalability, coupled with an intrinsic ability to create linear dilutions under a variety of operating conditions, makes the device applicable to high throughput screening applications such as combinatorial chemistry or cytotoxicity assays.  相似文献   

19.
This device is aimed at ensuring that the sample is uniformly and equivalently reacted with the antibody on the NC membrane in each test when the microfluidic liquid system is introduced to the chip. In this study, the developed microfluidic chip can avoid the presence of the sample and conjugate pads in the chip, while the precision of the chromatography system can be greatly improved using the same particles, NC membrane and antibody alongside the traditional strip. The results, taking the detection of cTnI as an example, revealed that the coefficient of variation (CV) is controlled within 4%, while the maximum record of the contrast chromatographic reagent strip can reach 15%. Additionally, the detection sensitivity can maintain the same order of magnitudes with that of the traditional chromatographic strip. With the results, the determination correlation of the developed microfluidic chip has been greatly improved. In addition, the CV of the chip in this study is greatly improved in comparison with that of the traditional strip. The biggest improvement lies in the mixing between the sample and the microspheres, indicating that this is a new approach to improve the CV of the traditional strip.  相似文献   

20.
High-throughput screening assays of native and recombinant proteins are increasingly crucial in life science research, including fields such as drug screening and enzyme engineering. These assays are typically highly parallel, and require minute amounts of purified protein per assay. To address this need, we have developed a rapid, automated microscale process for isolating specific proteins from sub-microlitre volumes of E. Coli cell lysate. Recombinant proteins are genetically tagged to drive partitioning into the PEG-rich phase of a flowing aqueous two-phase system, which removes approximately 85% of contaminating proteins, as well as unwanted nucleic acids and cell debris, on a simple microfluidic device. Inclusion of the genetic tag roughly triples recovery of the autofluorescent protein AcGFP1, and also significantly improves recovery of the enzyme glutathione S-transferase (GST), from nearly zero recovery for the wild-type enzyme, up to 40% with genetic tagging. The extraction process operates continuously, with only a single step from cell lysate to purified protein, and does not require expensive affinity reagents or troublesome chromatographic steps. The two-phase system is mild and does not disrupt protein function, as evidenced by recovery of active enzymes and functional fluorescent protein from our microfluidic process. The microfluidic aqueous two-phase extraction forms the core component of an integrated lab-on-a-chip device comprising cell culture, lysis, purification and analysis on a single device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号