首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A microfluidic paper-based analytical device (μPAD) for the separation of blood plasma from whole blood is described. The device can separate plasma from whole blood and quantify plasma proteins in a single step. The μPAD was fabricated using the wax dipping method, and the final device was composed of a blood separation membrane combined with patterned Whatman No.1 paper. Blood separation membranes, LF1, MF1, VF1 and VF2 were tested for blood separation on the μPAD. The LF1 membrane was found to be the most suitable for blood separations when fabricating the μPAD by wax dipping. For blood separation, the blood cells (both red and white) were trapped on blood separation membrane allowing pure plasma to flow to the detection zone by capillary force. The LF1-μPAD was shown to be functional with human whole blood of 24-55% hematocrit without dilution, and effectively separated blood cells from plasma within 2 min when blood volumes of between 15-22 μL were added to the device. Microscopy was used to confirm that the device isolated plasma with high purity with no blood cells or cell hemolysis in the detection zone. The efficiency of blood separation on the μPAD was studied by plasma protein detection using the bromocresol green (BCG) colorimetric assay. The results revealed that protein detection on the μPAD was not significantly different from the conventional method (p > 0.05, pair t-test). The colorimetric measurement reproducibility on the μPAD was 2.62% (n = 10) and 5.84% (n = 30) for within-day and between day precision, respectively. Our proposed blood separation on μPAD has the potential for reducing turnaround time, sample volume, sample preparation and detection processes for clinical diagnosis and point-of care testing.  相似文献   

2.
We report here a low-cost, rapid-prototyping, and beehive-like multilayer polymer microfluidic device for ultrahigh-throughput blood plasma separation. To understand the device physics and optimize the device structure, the effect of cross-sectional dimension and operational parameter on particle focusing behavior was explored using a single spiral microchannel device. Then, the blood plasma separation performance of the determined channel structure was validated using the blood samples with different hematocrits (HCTs). It was found that a high separation efficiency of 99% could be achieved using the blood sample with an HCT of 0.5% at a high throughput of 1 mL/min. Finally, a multilayer microfluidic device with a novel beehive-like multiplexing channel arrangement was developed for ultrahigh-throughput blood plasma separation. The prototype device could be fabricated within ∼1 hour utilizing the laser cutting and thermal lamination methods. The total processing throughput could reach up to 72 mL/min for 0.5% HCT sample with a plasma separation ratio close to 90%. Our device may hold potentials for the ultrahigh-throughput separation of blood plasma from large volume blood samples for downstream disease diagnosis.  相似文献   

3.
Effective methods for rapid sorting of cells according to their viability are critical in T cells based therapies to prevent any risk to patients. In this context, we present a novel microfluidic device that continuously separates viable and non-viable T-cells according to their dielectric properties. A dielectrophoresis (DEP) force is generated by an array of castellated microelectrodes embedded into a microfluidic channel with a single inlet and two outlets; cells subjected to positive DEP forces are drawn toward the electrodes array and leave from the top outlet, those subjected to negative DEP forces are repelled away from the electrodes and leave from the bottom outlet. Computational fluid dynamics is used to predict the device separation efficacy, according to the applied alternative current (AC) frequency, at which the cells move from/to a negative/positive DEP region and the ionic strength of the suspension medium. The model is used to support the design of the operational conditions, confirming a separation efficiency, in terms of purity, of 96% under an applied AC frequency of 1.5 × 10Hz and a flow rate of 20 μl/h. This work represents the first example of effective continuous sorting of viable and non-viable human T-cells in a single-inlet microfluidic chip, paving the way for lab-on-a-chip applications at the point of need.  相似文献   

4.
Park S  Zhang Y  Wang TH  Yang S 《Lab on a chip》2011,11(17):2893-2900
Biological sample processing involves purifying target analytes from various sample matrices and concentrating them to a small volume from a large volume of crude sample. This complex process is the major obstacle for developing a microfluidic diagnostic platform. In this study, we present a microfluidic device that can continuously separate and concentrate pathogenic bacterial cells from complex sample matrices such as cerebrospinal fluid and whole blood. Having overcome critical limitations of dielectrophoretic (DEP) operation in physiological media of high conductivity, we utilized target specific DEP techniques to incorporate cell separation, medium exchange, and target concentration into an integrated platform. The proposed microfluidic device can uptake mL volumes of crude biological sample and selectively concentrate target cells into a submicrolitre volume, providing ~10(4) fold of concentration. We designed the device based on the electrokinetic theory and electric field simulation, and tested the device performance with different sample types. The separation efficiency of the device was as high as 97.0% for a bead mixture in TAE buffer and 94.3% and 87.2% for E. coli in human cerebrospinal fluid and blood, respectively. A capture efficiency of 100% was achieved in the concentration chamber. With a relatively simple configuration, the proposed device provides a robust method of continuous sample processing, which can be readily integrated into a fully automated microfluidic diagnostic platform for pathogen detection and quantification.  相似文献   

5.
Browne AW  Ramasamy L  Cripe TP  Ahn CH 《Lab on a chip》2011,11(14):2440-2446
In this work, a new lab-on-a-chip for rapid analysis of low volume blood samples was designed, fabricated and demonstrated for integration of serum separation, hematocrit evaluation, and protein quantitation. Blood separation was achieved using microchannel flow-based separation. A novel method for evaluating hematocrit from microfluidic flow-separated blood samples was developed using gray scale analysis of a point-and-shoot digital photograph of separated blood in a micochannel. Protein quantitation was subsequently performed in a high surface area-to-volume ratio microfluidic chemiluminescent immunoassay using cell depleted serum produced by microfluidic flow-based separation of whole blood samples. All three steps were achieved in a single microchannel with separation of blood samples and hematocrit evaluation in less than 1 min, and protein quantitation in 5 min.  相似文献   

6.
Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis   总被引:1,自引:0,他引:1  
Pamme N  Wilhelm C 《Lab on a chip》2006,6(8):974-980
The ability to separate living cells is an essential aspect of cell research. Magnetic cell separation methods are among some of the most efficient methods for bulk cell separation. With the development of microfluidic platforms within the biotechnology sector, the design of miniaturised magnetic cell sorters is desirable. Here, we report the continuous sorting of cells loaded with magnetic nanoparticles in a microfluidic magnetic separation device. Cells were passed through a microfluidic chamber and were deflected from the direction of flow by means of a magnetic field. Two types of cells were studied, mouse macrophages and human ovarian cancer cells (HeLa cells). The deflection was dependent on the magnetic moment and size of the cells as well as on the applied flow rate. The experimentally observed deflection matched well with calculations. Furthermore, the separation of magnetic and non-magnetic cells was demonstrated using the same microfluidic device.  相似文献   

7.
A microfluidic platform developed for quantifying the dependence of erythrocyte (red blood cell, RBC) responses by ABO-Rh blood type via direct current insulator dielectrophoresis (DC-iDEP) is presented. The PDMS DC-iDEP device utilized a 400 x 170?μm2 rectangular insulating obstacle embedded in a 1.46-cm long, 200-μm wide inlet channel to create spatial non-uniformities in direct current (DC) electric field density realized by separation into four outlet channels. The DC-iDEP flow behaviors were investigated for all eight blood types (A+, A-, B+, B-, AB+, AB-, O+, O-) in the human ABO-Rh blood typing system. Three independent donors of each blood type, same donor reproducibility, different conductivity buffers (0.52-9.1?mS/cm), and DC electric fields (17.1-68.5?V/cm) were tested to investigate separation dependencies. The data analysis was conducted from image intensity profiles across inlet and outlet channels in the device. Individual channel fractions suggest that the dielectrophoretic force experienced by the cells is dependent on erythrocyte antigen expression. Two different statistical analysis methods were conducted to determine how distinguishable a single blood type was from the others. Results indicate that channel fraction distributions differ by ABO-Rh blood types suggesting that antigens present on the erythrocyte membrane polarize differently in DC-iDEP fields. Under optimized conductivity and field conditions, certain blind blood samples could be sorted with low misclassification rates.  相似文献   

8.
Liu YJ  Guo SS  Zhang ZL  Huang WH  Baigl D  Xie M  Chen Y  Pang DW 《Electrophoresis》2007,28(24):4713-4722
An integrated smart microfluidic device consisting of nickel micropillars, microvalves, and microchannels was developed for specific capture and sorting of cells. A regular hexagonal array of nickel micropillars was integrated on the bottom of a microchannel by standard photolithography, which can generate strong induced magnetic field gradients under an external magnetic field to efficiently trap superparamagnetic beads (SPMBs) in a flowing stream, forming a bed with sufficient magnetic beads as a capture zone. Fluids could be manipulated by programmed controlling the integrated air-pressure-actuated microvalves, based on which in situ bio-functionalization of SPMBs trapped in the capture zone was realized by covalent attachment of specific proteins directly to their surface on the integrated microfluidic device. In this case, only small volumes of protein solutions (62.5 nL in the capture zone; 375 nL in total volume needed to fill the device from inlet A to the intersection of outlet channels F and G) can meet the need for protein! The newly designed microfluidic device reduced greatly chemical and biological reagent consumption and simplified drastically tedious manual handling. Based on the specific interaction between wheat germ agglutinin (WGA) and N-acetylglucosamine on the cell membrane, A549 cancer cells were effectively captured and sorted on the microfluidic device. Capture efficiency ranged from 62 to 74%. The integrated microfluidic device provides a reliable technique for cell sorting.  相似文献   

9.
Yang S  Undar A  Zahn JD 《Lab on a chip》2007,7(5):588-595
A microfluidic device for continuous biosensing based on analyte binding with cytometric beads is introduced. The operating principle of the continuous biosensing is based on a novel concept named the "particle cross over" mechanism in microfluidic channels. By carefully designing the microfluidic network the beads are able to "cross-over" from a carrier fluid stream into a recipient fluid stream without mixing of the two streams and analyte dilution. After crossing over into the recipient stream, bead processing such as analyte-bead binding may occur. The microfluidic device is composed of a bead solution inlet, an analyte solution inlet, two washing solution inlets, and a fluorescence detection window. To achieve continuous particle cross over in microfluidic channels, each microfluidic channel is precisely designed to allow the particle cross over to occur by conducting a series of studies including an analogous electrical circuit study to find optimal fluidic resistances, an analytical determination of device dimensions, and a numerical simulation to verify microflow structures within the microfluidic channels. The functionality of the device was experimentally demonstrated using a commercially available fluorescent biotinylated fluorescein isothiocyanate (FITC) dye and streptavidin coated 8 microm-diameter beads. After, demonstrating particle cross over and biotin-streptavidin binding, the fluorescence intensity of the 8 microm-diameter beads was measured at the detection window and linearly depends on the concentration of the analyte (biotinylated FITC) at the inlet. The detection limit of the device was a concentration of 50 ng ml(-1) of biotinylated FITC.  相似文献   

10.
The inertial microfluidic technique, as a powerful new tool for accurate cell/particle separation based on the hydrodynamic phenomenon, has drawn considerable interest in recent years. Despite numerous microfluidic techniques of particle separation, there are few articles in the literature on separation techniques addressing external outlet geometry to increase the throughput efficiency and purity. In this work, we report on a spiral inertial microfluidic device with high efficiency (>98%). Herein, we demonstrate how changing the outlet geometry can improve the particle separation throughput. We present a complete separation of 4 and 6 μm from 10 μm particles potentially applicable to separate microalgae (Tetraselmis suecica from Phaeodactylum tricornutum). Two spiral microchannels with the same cross section dimension but different outlet geometry were considered and tested to investigate the particle focusing behavior and separation efficiency. As compared with particle focusing observed in channels with a simple outlet, the particle focusing in a modified outlet geometry appears in a more successful focusing manner with complete separation. This simple approach of particle separation makes it attractive for lab-on-a-chip devices for continuous extraction and filtration of a wide range of cell/particle sizes.  相似文献   

11.
The dielectrophoresis (DEP) phenomenon is used to separate platelets directly from diluted whole blood in microfluidic channels. By exploiting the fact that platelets are the smallest cell type in blood, we utilize the DEP-activated cell sorter (DACS) device to perform size-based fractionation of blood samples and continuously enrich the platelets in a label-free manner. Cytometry analysis revealed that a single pass through the two-stage DACS device yields a high purity of platelets (approximately 95%) at a throughput of approximately 2.2 x 10(4) cells/second/microchannel with minimal platelet activation. This work demonstrates gentle and label-free dielectrophoretic separation of delicate cells from complex samples and such a separation approach may open a path toward continuous screening of blood products by integrated microfluidic devices.  相似文献   

12.
As the medical community puts forward higher requirements for the speed and convenience of disease diagnosis, point-of-care testing has become a hot research topic to overcome various kinds of healthcare problems. Blood test is considered to be highly sensitive and accurate in clinical diagnosis. However, conventional plasma separation system tends to be bulky and needs professional operations. Moreover, imprecise separation may cause residual biochemical substances such as blood cells to affect the detection results. In this work, to solve these problems, we designed a portable centrifugal microfluidic platform for automatic, rapid and ultraprecise blood separation. The disc consists of multichambers and multi-microchannels where a plasma reservoir and a cell reservoir are connected to each other and collinear with the center of the circle. This structure overcomes the weakness of low separation efficiency (when hematocrit increases) under the traditional blood separation structure (bifurcation structure). As a result, the proposed system achieved 99.9% plasma purity, 99.9% separation efficiency (with a blood hematocrit of 48%) and 32.5% plasma recovery rate in the 50s, which provides a strong guarantee for rapid blood diagnosis and analysis, especially in areas where medical resources are limited.  相似文献   

13.
A new scheme has been described for continuous particle separation using EOF in microfluidic devices. We have previously reported a method for particle separation, called "pinched flow fractionation (PFF)", in which size-dependent and continuous particle separation can be achieved by introducing pressure-driven flows with and without particles into a pinched microchannel. In this study, EOF was employed to transport fluid flows inside a microchannel. By controlling the applied voltage to electrodes inserted in each inlet/outlet port, the flow rates from both inlets, and flow rates distributed to each outlet could be accurately tuned, thus enabling more effective separation compared to the pressure-driven scheme. In the experiment, the particle behaviors were compared between EOF and pressure-driven flow schemes. In addition, micrometer- and submicrometer-sized particles were accurately separated and individually collected using a microchannel with multiple outlet branch channels, demonstrating the high efficiency of the presented scheme.  相似文献   

14.
J Sun  M Li  C Liu  Y Zhang  D Liu  W Liu  G Hu  X Jiang 《Lab on a chip》2012,12(20):3952-3960
This work reports on a passive double spiral microfluidic device allowing rapid and label-free tumor cell separation and enrichment from diluted peripheral whole blood, by exploiting the size-dependent hydrodynamic forces. A numerical model is developed to simulate the Dean flow inside the curved geometry and to track the particle/cell trajectories, which is validated against the experimental observations and serves as a theoretical foundation for optimizing the operating conditions. Results from separating tumor cells (MCF-7 and Hela) spiked into whole blood indicate that 92.28% of blood cells and 96.77% of tumor cells are collected at the inner and the middle outlet, respectively, with 88.5% tumor recovery rate at a throughput of 3.33 × 10(7) cells min(-1). We expect that this label-free microfluidic platform, driven by purely hydrodynamic forces, would have an impact on fundamental and clinical studies of circulating tumor cells.  相似文献   

15.
Chen X  Cui D  Liu C  Li H  Chen J 《Analytica chimica acta》2007,584(2):237-243
A novel integrated microfluidic device that consisted of microfilter, micromixer, micropillar array, microweir, microchannel, microchamber, and porous matrix was developed to perform sample pre-treatment of whole blood. Cell separation, cell lysis and DNA purification were performed in this miniaturized device during a continuous flow process. Crossflow filtration was proposed to separate blood cells, which could successfully avoid clogging or jamming. After blood cells were lyzed in guanidine buffer, genomic DNA in white blood cells was released and adsorbed on porous matrix fabricated by anodizing silicon in HF/ethanol electrolyte. The flow process of solutions was simulated and optimized. The anodization process of porous matrix was also studied. Using the continuous flow procedure of cell separation, cell lysis and DNA adsorption, average 35.7 ng genomic DNA was purified on the integrated microfluidic device from 1 μL rat whole blood. Comparison with a commercial centrifuge method, the miniaturized device can extract comparable amounts of PCR-amplifiable DNA in 50 min. The greatest potential of this integrated miniaturized device was illustrated by pre-treating whole blood sample, where eventual integration of sample preparation, PCR, and separation on a single device could potentially enable complete detection in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.  相似文献   

16.
Multiple injection techniques for microfluidic sample handling   总被引:1,自引:0,他引:1  
Fu LM  Yang RJ  Lee GB  Pan YJ 《Electrophoresis》2003,24(17):3026-3032
This paper presents an experimental and numerical investigation into electrokinetic focusing flow injection for bioanalytical applications on 1 x N (i.e., 1 sample inlet port and N outlet ports) and M x N (i.e., M sample inlet ports and N outlet ports) microfluidic chips. A novel device is presented which integrates two important microfluidic phenomena, namely electrokinetic focusing and valveless flow switching within multiported microchannels. The study proposes a voltage control model which achieves electrokinetic focusing in a prefocusing sample injection system and which allows the volume of the sample to be controlled. Using the developed methods, the study shows how the sample may be prefocused electrokinetically into a narrow stream prior to being injected continuously into specified outlet ports. The microfluidic chips presented within this paper possess an exciting potential for use in a variety of techniques, including high-throughput chemical analysis, cell fusion, fraction collection, fast sample mixing, and many other applications within the micrototalanalysis systems field.  相似文献   

17.
We propose herein an improved microfluidic system for continuous and precise particle separation. We have previously proposed a method for particle separation called "pinched flow fractionation." Using the previously reported method, particles can be continuously separated according to differences in their diameters, simply by introducing liquid flows with and without particles into a specific microchannel structure. In this study, we incorporated PDMS membrane microvalves for flow rate control into the microfluidic device to improve the separation accuracy. By adjusting the flow rates distributed to each outlet, target particles could be precisely collected from the desired outlet. We succeeded in separating micron and submicron-size polymer particles. This method can be used widely for continuous and precise separation of various kinds of particles, and can function as an important part of microfluidic systems.  相似文献   

18.
We describe the design, microfabrication, and testing of a microfluidic device for the separation of cancer cells based on dielectrophoresis. Cancer cells, specifically green fluorescent protein‐labeled MDA‐MB‐231, are successfully separated from a heterogeneous mixture of the same and normal blood cells. MDA‐MB‐231 cancer cells are separated with an accuracy that enables precise detection and counting of circulating tumor cells present among normal blood cells. The separation is performed using a set of planar interdigitated transducer electrodes that are deposited on the surface of a glass wafer and slightly protrude into the separation microchannel at one side. The device includes two parts, namely, a glass wafer and polydimethylsiloxane element. The device is fabricated using standard microfabrication techniques. All experiments are conducted with low conductivity sucrose‐dextrose isotonic medium. The variation in response between MDA‐MB‐231 cancer cells and normal cells to a certain band of alternating‐current frequencies is used for continuous separation of cells. The fabrication of the microfluidic device, preparation of cells and medium, and flow conditions are detailed. The proposed microdevice can be used to detect and separate malignant cells from heterogeneous mixture of cells for the purpose of early screening for cancer.  相似文献   

19.
Continuous blood cell separation by hydrophoretic filtration   总被引:3,自引:0,他引:3  
Choi S  Song S  Choi C  Park JK 《Lab on a chip》2007,7(11):1532-1538
We propose a new hydrophoretic method for continuous blood cell separation using a microfluidic device composed of slanted obstacles and filtration obstacles. The slanted obstacles have a larger height and gap than the particles in order to focus them to a sidewall by hydrophoresis. In the successive structure, the height and gap of the filtration obstacles with a filtration pore are set between the diameters of small and large particles, which defines the critical separation diameter. Accordingly, the particles smaller than the criterion freely pass through the gap and keep their focused position. In contrast, the particles larger than the criterion collide against the filtration obstacle and move into the filtration pore. The microfluidic device was characterized with polystyrene beads with a minimum diameter difference of 7.3%. We completely separated polystyrene microbeads of 9 and 12 microm diameter with a separation resolution of approximately 6.2. This resolution is increased by 6.4-fold compared with our previous separation method based on hydrophoresis (S. Choi and J.-K. Park, Lab Chip, 2007, 7, 890, ref. 1). In the isolation of white blood cells (WBCs) from red blood cells (RBCs), the microfluidic device isolated WBCs with 210-fold enrichment within a short filtration time of approximately 0.3 s. These results show that the device can be useful for the binary separation of a wide range of biological particles by size. The hydrophoretic filtration as a sample preparation unit offers potential for a power-free cell sorter to be integrated into disposable lab-on-a-chip devices.  相似文献   

20.
In this report, a microfluidic system is presented for continuous and size-dependent separation of droplets utilizing microscale hydrodynamics. The separation scheme is based on laminar-flow focusing and spreading in a pinched microchannel, referred to as "pinched flow fractionation (PFF)", which was previously developed for the size-dependent separation of solid particles, such as polymer microparticles or cells. By simply introducing emulsion and the continuous phase into a microchannel, continuous separation could be achieved without using complicated operations or devices. We first examined whether this scheme could be applied for droplets, by using a pinched microchannel with one outlet, and observed the behaviors of monodisperse droplets generated at the upstream T-junction. Analysis via high-speed imaging revealed that the length of the pinched segment is critical for precise separation of droplets. Then, separation of a polydisperse oil-in-water emulsion that was prepared previously was demonstrated using a microfluidic device equipped with multiple outlets. These results showed the ability of the presented system to sort or select specific-sized droplets easily and accurately, which would be difficult to achieve using normal-scale schemes, such as centrifugation or filtration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号