首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An experimental study on the interplay of sorbent structure and fluid phase conditions (pH) has been carried out examining adsorption and transport of bovine serum albumin (BSA) and a monoclonal antibody (IgG 2a) on SP Sepharose Fast Flow and SP Sepharose XL. SP Sepharose Fast Flow is characterised by a relatively open pore network, while SP Sepharose XL is a composite structure with ligand-carrying dextran chains filling the pore space. Both adsorbents have similar ionic capacity. Protein transport and adsorption profiles were evaluated using confocal laser scanning microscopy. Under all investigated conditions, BSA uptake could be adequately explained by a pore diffusion mechanism. The adsorption profiles obtained for IgG 2a, however, indicated that changes in fluid phase conditions as well as a change in the solid phase structure could result in a more complex uptake mechanism as compared to pore diffusion alone. This mechanism results in a fast transport of proteins into the adsorbent, followed by an overshoot of protein in the center of the sorbent and a setback towards a homogeneous adsorption profile.  相似文献   

2.
The mass transfer of bovine serum albumin (BSA) to a cation exchanger, SP Sepharose FF, has been studied by finite batch adsorption experiments. The uptake curve was simulated with three mass transport models (i.e., effective pore diffusion model, surface diffusion model and Maxwell-Stefan model) incorporating the particle size distribution of the adsorbent particles. All the three models can simulate the uptake curves reasonably well. However, how well these models could simulate the real concentration profile within the adsorbent particle cannot be verified by the fitness of the models to the uptake curve. Thus, confocal laser scanning microscopy (CLSM) was used to visualize protein uptake to the porous adsorbent particles during the batch experiments. Using a fluorescent dye-labeled bovine serum albumin (BSA) for the dynamic adsorption experiments, the radial concentration profiles of the labeled BSA molecules into individual adsorbent particles at different times were obtained from the CLSM images. The protein distribution profiles within various particle diameters at different time were compared with the radial protein distributions predicted from the models. It reveals that surface diffusion model describes the intraparticle protein concentration profiles better than the other two models.  相似文献   

3.
A novel biomimetic ligand, N-benzyloxycarbonyl-l-tyrosine (N-cbz-l-Tyr), was screened by a combination method of molecular docking and immobilized receptor technique. Then, N-cbz-l-Tyr was immobilized on Sepharose CL-4B to prepare a specific affinity adsorbent for immunoglobulin G (IgG). Scatchard analysis of the binding isotherm for IgG on the adsorbent gave an association constant (K(a)) of 4.91 x 10(6) m(-1) and a theoretical maximum adsorption capacity of 17.3 mg IgG/mL gel. IgG with a purity of 98% was separated from human plasma by this new affinity adsorbent.  相似文献   

4.
A new immobilized metal affinity chromatography (IMAC) matrix was prepared by coordinating Cu2+ with cross-linked chitosan coated on non-porous silica gel (Cu-CTS-SiO2). Macroporous structure could be formed on the coated layer by imprinting polyethylene glycol (PEG) in chitosan film. The surface morphology changes on Cu-CTS-SiO2 bead prepared in different condition were confirmed by scanning electron microscopy (SEM). Effects of chitosan and PEG content in coating solution, the molecular mass of PEG on the surface macropore formation and adsorption capacity of bovine serum albumin (BSA) were investigated. Results indicated that coating solution with 2% chitosan and 10% PEG 20000 was optimal. Batch experiments were also conducted for elucidating the optimal pH, the adsorption isotherm and adsorption kinetics of BSA. Adsorption isotherm of trypsin on the same adsorbent was also performed. Results showed that the support itself had low non-specific interaction with both BSA and trypsin. The maximum adsorption capacity for BSA and trypsin on the prepared IMAC adsorbent could reach 192 mg and 5000 IU, respectively calculated by every gram of chitosan. The binding and eluting condition for BSA were tested on column filled with the adsorbent. Crude BSA sample could be purified on the IMAC column.  相似文献   

5.
The adsorption behavior of bovine serum albumin (BSA) on a Sepharose based hydrophobic interaction support has been studied. Flow microcalorimetry has been used to determine the heat of adsorption under overloaded chromatographic conditions. These data have been complemented with capacity factor and isotherm measurements to provide insight on the mechanisms of adsorption. The heat of adsorption data have confirmed that the hydrophobic interaction adsorption of BSA under linear isotherm conditions is driven by entropy changes. Under overloaded (non-linear) conditions, however, it has been shown that the changes in enthalpy can drive adsorption; this behavior is not evident from analyses of capacity factor data. It is postulated that for BSA adsorption on the Sepharose derivative of interest, attractive force interactions between adsorbed protein molecules drive the adsorption process under overloaded conditions in a high (NH4)2SO4 environment. It is further postulated that these interactions are due to a change in confirmation of the adsorbed protein under these conditions.  相似文献   

6.
A comparative study was performed on strong cation-exchangers to investigate the pH dependence, efficiency, binding strength, particle size distribution, static and dynamic capacity, and SEM pictures of chromatographic resins. The resins tested included: SP Sepharose XL, Poros 50 HS, Toyopearl SP 550c, SP Sepharose BB, Source 30S, TSKGel SP-5PW-HR20, and Toyopearl SP 650c. Testing was performed with four different proteins: anti-FVII Mab (IgG), aprotinin, lysozyme, and myoglobin. Dependence of pH on retention was generally very low for proteins with high pI. An unexpected binding at pH 7.5 of anti-FVII Mab with pI < 7.5 was observed on several resins. Efficiency results show the expected trend of higher dependence of the plate height with increasing flow rate of soft resins compared to resins for medium and high-pressure operation. Determination of particle size distribution by two independent methods, Coulter counting and SEM, was in very good agreement. The mono-dispersed nature of Source 30S was confirmed. Binding to cation-exchange resins as a function of ionic strength varies depending on the specific protein. Generally, binding and elution at high salt concentration may be performed with Toyopearl SP 550c and Poros 50 HS, while binding and elution at low salt concentration may be performed with Toyopearl SP 650c. A very high binding capacity was obtained with SP Sepharose XL. Comparison of static capacity and dynamic capacity at 10% break-through shows in general approximately 50-80% utilisation of the total available capacity during chromatographic operation. A general good agreement was obtained between this study and data obtained by others. The results of this study may be used for selection of resins for testing in process development. The validity of experiments and results with model proteins were tested using human insulin precursor in pure state and in real feed-stock on Toyopearl SP 550c, SP Sepharose BB, and Toyopearl SP 650c. Results showed good agreement with experiments with model proteins.  相似文献   

7.
1. INTRODUCTION Chitosan is a hydrolyzed derivative of chitin and belongs to a family of linear unbranched polysaccharides which contain large amounts of 1,4-linked-2-amino-2-deoxy-β-D-glucan residues. The presence of free amine groups in chitosan enhances the solubility and reactivity of this polymer. Interest in modifying chitosan by using glutaraldehyde has recently increased. The derivatized polymers have been employed for many applications [1~2], including protein immobilization…  相似文献   

8.
In this article,a spherical chitosan gel crosslinked by epichlorohydrin was prepared.It was then loaded with copper ions to produce a metal chelate affinity adsorbent for protein.The uptake of bovine serum albumin(BSA)by the affinity adsorbent was investigated.and the adsorption capacity for BSA as high as 40mg/g-wet beads was observed.The adsorption equilibrium data was well correlated by the Langmuir equation.The adsorption was considerably affected by pH.In additio.The amount of BSA adsorbed onto the beads decreased with the increasing of aqueous phase ionic strength,so adsorbed BAS can be desorbed by adjusting pH orionic strength of the solution.  相似文献   

9.
Most chromatographic processes involve separation of two or more species, so development of a simple, accurate multicomponent chromatographic model can be valuable for improving process efficiency and yield. We consider the case of breakthrough chromatography, which has been considered in great depth for single-component modeling but to a much more limited degree for multicomponent breakthrough. We use the shrinking core model, which provides a reasonable approximation of particle uptake for proteins under strong binding conditions. Analytical column solutions for single-component systems are extended here to predict binary breakthrough chromatographic behavior for conditions under which the external transport resistance is negligible. Analytical results for the location and profile of displacement effects and expected breakthrough curves are derived for limiting cases. More generally, straightforward numerical results have also been obtained through simultaneous solution of a set of simple ordinary differential equations. Exploration of the model parameter space yields results consistent with theoretical expectations. Additionally, both analytical and numerical predictions compare favorably with experimental column breakthrough data for lysozyme-cytochrome c mixtures on the strong cation exchanger SP Sepharose FF. Especially significant is the ability of the model to predict experimentally observed displacement profiles of the more weakly adsorbed species (in this case cytochrome c). The ability to model displacement behavior using simple analytical and numerical techniques is a significant improvement over current methods.  相似文献   

10.
Confocal laser scanning microscopy (CLSM) was used to study single‐ and two‐component protein uptake for α‐lactalbumin (ALA) and β‐lactoglobulin (BLG), as models for whey proteins, to SP Sepharose FF at pH 3.7 during batch experiments in a finite bath. By coupling a fluorescent dye with the protein molecule, the penetration into individual adsorbent particles at different times during batch uptake was visualised. In a single‐component system, BLG penetrated fast into the adsorbent beads and gradually filled them in a shell‐wise fashion, while adsorption of ALA was mostly confined to the outer shells of the adsorbent. For the two‐component studies, the results showed that ALA was able to displace BLG despite its lower affinity to the adsorbent under the employed conditions. CLSM results were then compared both qualitatively and quantitatively to their counterparts obtained in traditional experiments by indirect measurements of the protein concentration in the fluid phase. A novel quantitative approach was undertaken by modifying the simple kinetic rate model traditionally used to determine the kinetic rate constant, k1, for batch uptake experiments, in order to describe batch uptake kinetics based on CLSM data. Although BLG results were in good agreement, there was a discrepancy in ALA results.  相似文献   

11.
Guo M  Wang J  Wu Y  Xu M  Gao X 《色谱》2012,30(1):86-90
为了获得一种优良的抗体纯化介质,制备了重组金黄色葡萄球菌蛋白A(rProtein A)亲和填料,并考察了所制备的亲和填料的纯化性能。利用自行构建的rProtein A工程菌,经诱导表达、纯化获得rProtein A纯品,将其偶联到经环氧氯丙烷活化的Sepharose 4 Fast Flow凝胶上,得到rProtein A亲和填料,并使用兔抗尿酸氧化酶抗体对该填料的性能进行验证。结果显示,在自制的rProtein A亲和填料上rProtein A浓度为1.5×10~4 mol/L。采用Scatchard模型分析,得到其解离常数和最大表观吸附量分别为2.28×10~7 mol/L和20.697 g/L,说明制得的rProtein A亲和填料对抗体有很好的结合能力。将该填料于0.1 mol/L NaOH溶液中浸泡1 h,其色谱性能未见变化。将该填料用于纯化兔抗体,湿胶结合抗体量可达19 mg/mL;一步柱色谱即可得到电泳纯度的抗体样品,回收率高于96%。本研究为rProtein A亲和填料的国产化奠定了基础。  相似文献   

12.
A method for fast in situ measurement of adsorption kinetics based on a finite bath was developed. We modified the conventional finite bath by replacing the external loop by a dip probe which enables in situ measurement of the concentration change in the contactor. Deposition of adsorbent particles on the reflection surface of the dip probe compromised measurements. Different membranes, a polyamide, a polypropylene and a nylon membrane were tested to protect the internal reflection surface of the dip probe from fouling with adsorbent particles. The nylon membrane provided efficient protection and high mass transfer evaluated by response time experiments. Unspecific adsorption of the model protein on the membrane could also be excluded. To corroborate the measurements of the dip probe the results were compared to a conventional finite bath and to a shallow-bed. The uptake curves for human polyclonal IgG at different concentrationes (0.1-3 g/l) on rProtein A Sepharose FF and MabSelect were used as model system. The effective diffusion coefficients were determined using a pore diffusion model. These values were in good agreement for all methods.  相似文献   

13.
A comparative study was performed on heparin resins and strong and weak cation exchangers to investigate the pH dependence, efficiency, binding strength, particle size distribution, static and dynamic capacity, and scanning electron microscopy pictures of chromatographic resins. The resins tested include: Heparin Sepharose FF, SP Sepharose FF, CM Sepharose FF, Heparin Toyopearl 650 m, SP Toyopearl 650 m, CM Toyopearl 650 m, Ceramic Heparin HyperD M, Ceramic S HyperD 20, and Ceramic CM HyperD F. Testing was performed with four different proteins: anti-FVII Mab (IgG), aprotinin, lysozyme, and myoglobin. Dependence of pH on retention was generally very low for proteins with high isoelectric point (pI), though some decrease of retention with increasing pH was observed for CM Ceramic HyperD F and S Ceramic HyperD 20. Binding of anti-FVII Mab with pI < 7.5 was observed on several resins at pH 7.5. Efficiency results show the expected trend of increasing dependence of the plate height with increasing flow rate of Ceramic HyperD resins followed by Toyopearl 650 m resins and the highest flow dependence of the Sepharose FF resins corresponding to their pressure resistance. Determination of particle size distribution by two independent methods, coulter counting and SEM, was in good agreement. Binding strength of cation-exchange resins as a function of ionic strength varies depending on the protein. Binding and elution at high salt concentration may be performed with Ceramic HyperD resins, while binding and elution at low salt concentration may be performed with model proteins on heparin resins. Employing proteins with specific affinity for heparin, a much stronger binding is observed, however, some cation exchangers may still be good substitutions for heparin resins. Dynamic capacity at 10% breakthrough compared to static capacity measurements and dynamic capacity displays that approximately 40-80% of the total available capacity is utilized during chromatographic operation depending on flow rate. A general good agreement was obtained between results of this study and data obtained by others. Results of this study may be used in the selection of resins for testing during protein purification process development.  相似文献   

14.
壳聚糖亲和磁性毫微粒的制备及其对蛋白质的吸附性能研究   总被引:35,自引:0,他引:35  
以壳聚糖为包裹材料包埋自制的磁流体 ,制备了具有核 壳结构的磁性毫微粒 ,并偶联色素配基CibacronBlue 3GA(偶联量 1 4 .5μmol/mL)得到了一种新型亲和磁性毫微粒 .结果表明 ,所得亲和磁性微球具有较窄的粒径分布、形状规整 .以牛血清白蛋白 (BSA)和溶菌酶 (Lys)为目标蛋白 ,考察了该亲和磁性毫微粒的吸附性能 ,发现其对BSA和Lys的吸附量分别为 4和 2 8mg/g,吸附行为满足Langmuir吸附等温式 ,且对时间依赖性小而对溶液离子强度敏感 .  相似文献   

15.
A new protein adsorbent is introduced based on the coupling of the common buffer ion, tris(hydroxymethyl)aminomethane, to the agarose gel Sepharose HP from GE Healthcare Bio-Sciences AB, Uppsala, Sweden. The article describes the synthesis of the new adsorbent and the use of BSA as a model in a binding study. By optimization of the coupling procedure, a maximum ligand density of 63.5 μmol/mL gel could be obtained. Adsorption equilibria were investigated in the pH range 5.0-8.0 and at salt concentrations of 0-0.4 mol/L. Binding of BSA under different conditions indicated that both electrostatic interaction and hydrogen bonding were involved in the adsorption process where the former played a major role.  相似文献   

16.
Several prototypes of aromatic (Ar) and non-aromatic (NoAr) cation-exchange ligands suitable for capture of proteins from high conductivity (ca. 30 mS/cm) mobile phases were coupled to Sepharose 6 Fast Flow. These new prototypes of multi-modal cation-exchangers were found by screening a diverse library of multi-modal ligands and selecting cation-exchangers resulting in elution of test proteins at high ionic-strength. Candidates were then tested with respect to breakthrough capacity of bovine serum albumin (BSA), human IgG and lysozyme in buffers adjusted to a high conductivity. By applying a salt-step or a pH-step the recoveries were also tested. We have found that aromatic multi-modal cation-exchanger ligands based on carboxylic acids seem to be optimal for the capture of proteins at high-salt conditions. Experimental evidence on the importance of the relative position of the aromatic group in order to improve the breakthrough capacity at high-salt conditions has been found. It was also found that an amide group on the alpha-carbon was essential for capture of proteins at high-salt conditions. Compared to a strong cation-exchanger such as SP Sepharose Fast Flow the best new multi-modal weak cation-exchangers have breakthrough capacities of BSA, human IgG and lysozyme that are 10-30 times higher at high-salt conditions. The new multi-modal cation-exchangers can also be used at normal cation-exchange conditions and with either a salt-step or a pH-step (to pH-values where the proteins are negatively charged) to accomplish elution of proteins. In addition, the functional performance of the new cation-exchangers was found to be intact after treatment in 1.0 M sodium hydroxide solution for 10 days. For BSA it was also possible to design cation-exchangers based on non-aromatic carboxyl acid ligands with high capacities at high-salt conditions. A common feature of these ligands is that they contain hydrogen acceptor groups close to the carboxylic group. Furthermore, it was also possible to obtain high breakthrough capacities for lysozyme and BSA of a strong cation-exchanger (SP Sepharose Fast Flow) if phenyl groups were attached to the beads. Varying the ligand ratio (SP/Phenyl) could be used for optimizing the function of mixed-ligand ion-exchange media.  相似文献   

17.
This study presents the use of flow cytometry as a high-throughput quantifiable technique to study multicomponent adsorption interactions between proteins and surfaces. Flow cytometry offers the advantage of high-throughput analysis of multiple parameters on a very small sampling scale. This enables flow cytometry to distinguish between individual adsorbent particles and adsorbate components within a suspension. As a proof of concept study, the adsorption of three proteins--bovine serum albumin (BSA), bovine immunoglobulin gamma (IgG) and fibrinogen--onto five surface-modified organosilica microsphere surfaces was used as a model multicomponent system for analysis. By uniquely labeling each protein and solid support type with spectrally distinguishable fluorescent dyes, the adsorption process could be "multiplexed" allowing for simultaneous screening of multiple adsorbate (protein) and adsorbent (particle surface) interactions. Protein adsorption experiments quantified by flow cytometry were found to be comparable to single-component adsorption studies by solution depletion. Quantitative distribution of the simultaneous competitive adsorption of BSA and IgG indicated that, at concentrations below surface saturation, both proteins adsorbed onto the surface. However, at concentrations greater than surface saturation, BSA preferentially adsorbed. Multiplexed particle suspensions of optically encoded particles were modified to produce a positively and negatively charged surface, a grafted 3400 MW poly(ethylene glycol) layer, or a physisorbed BSA or IgG layer. It was observed that adsorption was rapid and irreversible on all of the surfaces, and preadsorbed protein layers were the most effective in preventing further protein adsorption.  相似文献   

18.
Adsorption chromatography is increasingly used for protein separations and biomedical applications. Therapeutic molecules such as antibodies, cytokines, therapeutic DNA, and plasma proteins must be purified before characterization and utilization. Use of immunoglobulins as immunodiagnostic and therapeutic tools has initiated many attempts to develop new adsorbents for their separation. Protein A and protein G are the affinity ligands most widely used for separation of immunoglobulins. These proteins are reliable, and have good selectivity and specificity, but are very expensive. Much attention has therefore been devoted to developing alternative methods for separation of immunoglobulins. Pseudobiospecific ligands, for example metal ions and amino acids, can be used for separation of a wide range of biological molecules. In this study, IgG1, IgG2, and IgG3, three subclasses of human IgG, were separated from human serum using the amino acid histidine grafted on to bisoxirane-activated Sepharose, as pseudobiospecific adsorbent. Adsorption of IgG from different animal species on the same chromatographic adsorbent was also tested. The high recovery and purification on histidyl–bisoxirane–Sepharose gel of IgG from all the sources tested compared well with results obtained by use of protein A–Sepharose gel.  相似文献   

19.
Affinity purification of proteins using expanded beds.   总被引:5,自引:0,他引:5  
The use of expanded beds of affinity adsorbents for the purification of proteins from feedstocks containing whole or broken cells is described. It is demonstrated that such feedstocks can be applied to the bed without prior removal of particulate material by centrifugation or filtration thus showing considerable potential for this approach in simplifying downstream processing flow-sheets. A stable, expanded bed can be obtained using simple equipment adapted from that used for conventional packed bed adsorption and chromatography processes. Circulation and mixing of the adsorbent particles is minimal and liquid flow through the expanded bed shows characteristics similar to those of plug flow. Frontal analysis performed with the highly selective affinity system involving the adsorption of human polyclonal immunoglobulin G onto Protein A Sepharose Fast Flow indicate that the adsorption performance of the expanded bed is similar to that achieved when the same amount of adsorbent is used in a packed configuration at the same volumetric flow-rate. The adsorption performance of the expanded bed was not diminished when adsorption was carried out in the presence of intact yeast cells. Batch adsorption experiments also indicated that the adsorption characteristics of the affinity system were not greatly altered in the presence of cells in contrast to results from a less selective ion-exchange system. An expanded bed of Cibacron Blue Sepharose Fast Flow was used to purify phosphofructokinase from feedstock of disrupted yeast prepared by high pressure homogenisation without the need for prior removal of particulate material. The potential for the use of expanded beds in large scale purification systems is discussed.  相似文献   

20.
Elkak  Assem  Ismail  Sanaa  Uzun  Lokman  Denizli  Adil 《Chromatographia》2009,69(11):1161-1167

Adsorption chromatography is increasingly used for protein separations and biomedical applications. Therapeutic molecules such as antibodies, cytokines, therapeutic DNA, and plasma proteins must be purified before characterization and utilization. Use of immunoglobulins as immunodiagnostic and therapeutic tools has initiated many attempts to develop new adsorbents for their separation. Protein A and protein G are the affinity ligands most widely used for separation of immunoglobulins. These proteins are reliable, and have good selectivity and specificity, but are very expensive. Much attention has therefore been devoted to developing alternative methods for separation of immunoglobulins. Pseudobiospecific ligands, for example metal ions and amino acids, can be used for separation of a wide range of biological molecules. In this study, IgG1, IgG2, and IgG3, three subclasses of human IgG, were separated from human serum using the amino acid histidine grafted on to bisoxirane-activated Sepharose, as pseudobiospecific adsorbent. Adsorption of IgG from different animal species on the same chromatographic adsorbent was also tested. The high recovery and purification on histidyl–bisoxirane–Sepharose gel of IgG from all the sources tested compared well with results obtained by use of protein A–Sepharose gel.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号