首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential photodynamic therapy photosensitizers Methylene Blue, Azure C, Methylene Violet, Thionine, Methylene Green, Haematoporphyrin, Nile Blue A, chloroaluminium phthalocyanine and bis-aluminium phthalocyanine were examined for their photoeffects and dark toxicity against a human superficial bladder carcinoma cell-line. By examination of [3H]thymidine uptake into dye-treated cells after irradiation with a copper-vapour pumped dye laser, it was found that Methylene Blue was the most phototoxic and dark toxic of all the dyes tested, suggesting that the dye might be of some use as a topically applied photodrug for use in photodynamic therapy of superficial or early-recurring carcinomas.  相似文献   

2.
Due to the augmented number of immunocompromised patients, the infections associated to the pathogen of the genus Candida have increased dramatically in the recent years. In order to proliferate, Candida albicans can produce a germ tube formation extending from the cells. The germ tube formation is a transition state from budding to hyphal cells, and represents an essential stage for virulence. In this work we studied the effect of the photodynamic antimicrobial chemotherapy (PACT), a potential antimicrobial treatment on the germ tube formation by C. albicans. Germ tube formation was induced by goat serum after different treatments with Methylene blue (MB) and Laser (683nm). Our results demonstrated that photodynamic therapy using MB, as a photosensitizing drug; inhibits both the growth and the germ tube formation by C. albicans. Thus, our results suggest the possibility that Methylene blue, combined with light in a specific wavelength, can be used as a promising novel antifungal agent.  相似文献   

3.
Abstract— The quantum yield of the photodynamic inactivation of lysozyme increases in the sequence acridine orange, methylene blue, proflavine and acriflavine (1:5:6:12). At least up to protein concentrations of 0.1 m M , singlet oxygen is exclusively responsible for the inactivation of the enzyme. For methylene blue, acriflavine and proflavine the quantum yields decrease considerably with increasing dye concentrations. From measurements in H2O and D2O buffer solutions it was concluded that in the case of methylene blue the effect is mainly caused by the quenching of singlet oxygen [rate constant (3–4) × 108 M −1 s−1]. For the acridine sensitizers both singlet oxygen and dye triplet quenching processes have to be taken into consideration. It has been found that all sensitizers act as competitive inhibitors of the enzymatic reaction of lysozyme. However, the dye-protein interaction near the active center cannot be responsible for the observed dye self-quenching effect.  相似文献   

4.
This paper reports the synthesis and characterization of surface-enhanced Raman scattering (SERS) label-tagged gold nanostars, coated with a silica shell containing methylene blue photosensitizing drug for singlet-oxygen generation. To our knowledge, this is the first report of nanocomposites possessing a combined capability for SERS detection and singlet-oxygen generation for photodynamic therapy. The gold nanostars were tuned for maximal absorption in the near-infrared (NIR) spectral region and tagged with a NIR dye for surface-enhanced resonance Raman scattering (SERRS). Silica coating was used to encapsulate the photosensitizer methylene blue in a shell around the nanoparticles. Upon 785 nm excitation, SERS from the Raman dye is observed, while excitation at 633 nm shows fluorescence from methylene blue. Methylene-blue-encapsulated nanoparticles show a significant increase in singlet-oxygen generation as compared to nanoparticles synthesized without methylene blue. This increased singlet-oxygen generation shows a cytotoxic effect on BT549 breast cancer cells upon laser irradiation. The combination of SERS detection (diagnostic) and singlet-oxygen generation (therapeutic) into a single platform provides a potential theranostic agent.  相似文献   

5.
Metallo naphthosulfobenzoporphyrazines sulfonated to different degrees (M-NSBP) were prepared, and their potential as photosensitizers for the photodynamic therapy (PDT) of cancer was evaluated. M-NSBP can be viewed as hybrid molecules between sulfophthalocyanines and naphthalocyanines resulting in distinct differences in the absorption spectra between the mono-through tetrasulfonated derivatives. This feature greatly facilited their purification. Using V-79 Chinese hamster cells in vitro, the disulfonated derivatives were found slightly more photoactive than the hydrophilic trisulfonated derivatives while the monosulfonated derivative was inactive, in spite of a sixfold higher cell uptake. In the case of the di- and trisulfonated derivatives, differences in phototoxicity correlated well with their relative cell uptake. Substitution of Al for Zn had little effect on the extent of phototoxicity of the M-NSBP. In vitro PDT of the EMT-6 cells after in vivo dye administration, revealed a similar potency for direct cell killing between the di- and trisulfonated AlOH-NSBP, while the monosulfonated analog was inactive. PDT with the amphiphilic disulfonated AlOH-NSBP on the EMT-6 mammary tumor in BALB/c mice induced a significant tumor response, while the monosulfonated derivative was much less active.  相似文献   

6.
Methylene blue transfers electrons to a membrane-associated b-type cytochrome in particulate fractions from corn coleoptiles. The Km for methylene blue is less than 1 µM under optimal conditions. This reaction is destroyed by boiling, but not by 7 M urea. Kinetic analyses of the influence of light intensity on cytochrome reduction suggest that a first order photochemical reaction is limiting. Free EDTA may serve as an electron donor in this system at least at high methylene blue and protein concentrations. The photoactivity does not coincide either with mitochondrial or endoplasmic reticulum markers, and may be localized in plasma membrane. There is an estimated 5 times 10-10 mol photoreducible cytochrome per g coleoptile tissue. Studies on the effect of pH on the reaction in the presence of methylene blue or thionine indicate that dye photoreduction itself is not rate-limiting. Wavelength dependence studies suggest that it is methylene blue monomer and not dimer which mediates the reaction. Although oxygen is apparently required for the reaction, neither superoxide nor excited singlet oxygen appear to be involved. The reaction mechanism is still unknown.  相似文献   

7.
The intercalation of methylene blue into mordenite zeolite was studied by diffuse reflectance spectroscopy. Methylene blue was incorporated into mordenite by ion exchange in the aqueous phase. Samples of sodium, calcium and protonated mordenite were subjected to methylene blue loading. The DR spectra observed shortly after mixing the dye with sodium mordenite are those of aggregated species adsorbed on the surface. The period of intercalation is very short (1 h) for protonated mordenite and is too long for calcium mordenite (7 days). The hydrated mordenite samples containing intercalated methylene blue show two 660 and 610 nm bands which are assigned to monomeric and dimeric species of methylene blue, respectively. Upon dehydration a new band at 745 nm is observed which corresponds to the protonated dye molecule. The intensity of this band increases with severity of dehydration. Those dehydrated samples containing merely aggregated dye molecules adsorbed on the surface do not show the 745 nm band. The protonation of methylene blue is reversible by the dehydration-hydration process.  相似文献   

8.
A MECHANISM FOR THE METHYLENE BLUE SENSITIZED OXIDATION OF NUCLEOTIDES   总被引:1,自引:0,他引:1  
Abstract— An investigation of the methylene blue sensitized oxidation of isolated nucleotides has been carried out, based on the behaviour of the excited dye molecule in long-term irradiation and flash photolysis experiments. It was necessary first to establish the effect of the phosphate buffer upon the triplet excited state of the dye and the consequent effect upon its photo-fading. The buffer has a salt effect which accelerates the protonation of the dye triplet, and also the photoreduction of the dye which takes place through the resulting protonated triplet. Xanthosine monophosphate (XMP), which is the nucleotide most sensitive to the photodynamic action of methylene blue, is also effective in reducing the triplet of the dye, while other nucleotides which are resistant to photooxidation do not act as reducing agents. The quantum yield of the sensitized oxidation of XMP was found to correspond to that of the anaerobic photo-reduction of methylene blue in its presence, which leads to the conclusion that the primary step of the photooxidation is electron or hydrogen abstraction from the nucleotide by the triplet excited methylene blue molecule.  相似文献   

9.
The effects of the photodynamic action of methylene blue (MB-PDA) on strains of Escherichia coli were investigated to determine whether the dye could be used in photodynamic therapy (PDT). Using the method of alkaline sucrose gradient sedimentation, it was shown that in darkness MB induces a type of prelesion in DNA that transforms into single-strand breaks in alkaline conditions, provided that the dye is present during the processing of the gradient. This prelesion is completely reversible if the cells are washed immediately to remove the dye. However, after illumination with white light, the prelesions become "fixed" stable lesions, irreversible even after successive washings. The lethal damage induced by MB-PDA in E. coli can be repaired by the excision-repair system (about 30%) and by the recA-dependent repair system (about 70%). Polymerase I enzyme participates actively in the repair of the damage. MB-PDA is a weak mutagen and the induction of mutations by this treatment is restricted to high survival rates. Moreover, MB-PDA does not induce the SOS system (an inducible repair system dependent of the recA and loxA genes products), as measured by Weigle reactivation. However, it seems that this treatment can impair the repair systems in E. coli.  相似文献   

10.
Methylene blue (MB+) is a well-known dye in medicine and has been discussed as an easily applicable drug for the topical treatment during photodynamic therapy (PDT). The therapeutic response of MB+ was investigated in vivo by local injection of MB+ in a xenotransplanted subcutanous tumor (adeno-carcinoma, G-3) in female nude mice. MB+ in a concentration of 1% was applied both undiluted and diluted to 0.1 and 0.01% with isotonic sodium chloride. Treatment with 1% MB+ and subsequent irradiation at 662 nm with 100 J/cm2 led to complete tumor destruction in 79% of the treated animals. A decrease of the fluence rate from 100 to 50 mW/cm2 increased the phototoxic response as well as fractionated light application. Small sensitizer concentrations reduced the PDT effect significantly. It seems that the light induced reaction of MB+ could be correlated with the rapid production of reactive oxygen species. Below a threshold dose of MB+ oxidative damage of the tissue is prevented. However, above this dose, as a point of no return, MB+ acts as an extremely potent oxidant.  相似文献   

11.
This study reports that photosensitizers encapsulated in supramolecular protein cages can be internalized by tumor cells and can deliver singlet oxygen intracellularly for photodynamic therapy (PDT). As an alternative to other polymeric and/or inorganic nanocarriers and nanoconjugates, which may also deliver photosensitizers to the inside of the target cells, protein nanocages provide a unique vehicle of biological origin for the intracellular delivery of photosensitizing molecules for PDT by protecting the photosensitizers from reactive biomolecules in the cell membranes, and yet providing a coherent, critical mass of destructive power (by way of singlet oxygen) upon specific light irradiation for photodynamic therapy of tumor cells. As a model, we demonstrated the successful encapsulation of methylene blue (MB) in apoferritin via a dissociation–reassembly process controlled by pH. The resulting MB-containing apoferritin nanocages show a positive effect on singlet oxygen production, and cytotoxic effects on MCF-7 human breast adenocarcinoma cells when irradiated at the appropriate wavelength (i.e. 633 nm).  相似文献   

12.
Persister bacteria tolerate bactericidal antibiotics due to transient and reversible phenotypic changes. As these bacteria can limit the effectiveness of antibiotics to eradicate certain infections, their elimination is a relevant issue. Photodynamic therapy seems suitable for this purpose, but phenotypic tolerance to it has also been reported for Pseudomonas aeruginosa . To test whether any phenotypic feature could confer tolerance against both antibiotics and photoinactivation, survivors from exposures to light in the presence of methylene blue were treated with ofloxacin, an antibiotic effective on nongrowing bacteria. Susceptibility to ofloxacin was normal in these bacteria in spite of their increased ability to survive photodynamic inactivation, suggesting the absence of cross‐tolerance. It thus seemed possible to use one of these treatments to eliminate bacteria which had phenotypic tolerance to the other. To test this strategy, persister bacteria emerging from ofloxacin treatments were submitted to the action of light and methylene blue while the antibiotic remained in the bacterial suspension. Persisters lost their clonogenic ability under these conditions and the effects of the treatments seemed to be synergistic. These observations suggest that photodynamic antimicrobial therapy could be used as a complement to antibiotic treatments to eliminate persister bacteria from localized infections.  相似文献   

13.
Methylene blue (MB+) is a well-known dye in medicine and has been discussed as an easily applicable drug for topical treatment in photodynamic therapy (PDT). Methylene blue can potentially be used as a redox indicator to detect the important redox reactions that are induced during PDT. The kinetics of this process was analyzed on a subcellular level with confocal laser scanning microscopy. BKEz-7 endothelial cells were incubated 4 h with 1 microM MB+. The fluorescence dynamics of MB+ during irradiation with 633 nm light was observed with subcellular resolution. Images were acquired at 0.5 s intervals (frame rate 1 image/0.5 s). Fluorescence was observed in the red channel of the laser scanning microscope. Synchronously, the phase-contrast image was visualized with the green channel. Morphological changes could therefore be correlated with the dynamics of MB+. In addition, the light-dose-dependent phototoxicity at 633 nm irradiation was determined by viable cell counting. After an induction period (phase I), fast fluorescent spikes could be observed in the whole cytoplasm, which decayed with a time constant of about 20 s (phase II), followed by a period of nearly constant fluorescence intensity (phase III) and exponential photobleaching (phase IV). Phase II exhibits highly nonlinear kinetics, which is hypothesized to correlate probably with a nonlinear quantal production of reactive oxygen species (ROS). Morphological cell changes were not observed during phase II. During phase III, a pycnotic cell nucleus developed. From the determination of viable cells we can conclude that a light dose applied within phase II was only sublethal in correlation with morphological observations. Overproduction of ROS leading finally to cell killing during phases III and IV is discussed.  相似文献   

14.
Planktonic Pseudomonas aeruginosa cells harvested in stationary phase were exposed to red light in the presence of methylene blue to study the potential occurrence of persistence in bacterial populations submitted to photodynamic antimicrobial therapy. Survival curves revealed the existence of small subpopulations of cells exhibiting increased ability to tolerate the treatment. These subpopulations were detected even using high concentrations of photosensitizer, whether added in a single step or following a fractionated scheme, and when the irradiation medium was modified to delay the photodecomposition of methylene blue. When cells grown from survivors to the treatment were cultured and exposed to red light and dye, their responses were similar to that of the original strain. These results exclude exhaustion of the photosensitizer and selection of resistant mutants as explanations for the features of the survival curves. Cells able to tolerate the treatment were found even when radiation was imparted at a high‐dose rate. They exhibit a response typical of persisters, which tolerate antimicrobial agents due to transient and reversible changes in their phenotype, suggesting that persistence is a factor to consider upon evaluating the efficacy of photodynamic antimicrobial therapy.  相似文献   

15.
The photodegradation of the synthetic rubbers cis-1,4-polybutadiene, polystyrenebutadiene and polyisoprene was studied. The chemical structure of the polymers as well as the effect of changing the solvent and the additive were particularly taken into consideration. The polychloroprene rubber in this study was irradiated either as a film or in solution. The presence of methylene blue affects the endothermic peaks observed in its differential scanning calorimetry diagrams. Methylene blue acts as a photostabilizer dye in solutions and films of polychloroprene. Mixtures of methylene blue, β-carotene as a singlet oxygen quencher and Fmbanox as a known anti-oxidant showed synergystic behaviour.  相似文献   

16.
Methylene blue and its congeners as model dyes were adsorbed onto stainless steel particles at different ionic strengths, pH values, and ethanol contents, and the adsorption mechanism was investigated. A Fourier transform infrared spectroscopy (FTIR) analysis of the dyes adsorbed on the stainless steel plate was carried out to determine the orientations of the adsorbed dyes on stainless steel surface. The adsorption isotherms for all the dyes tested were approximated by a Langmuir equation (Q=Kq(m)C/(1+KC)) in most cases except under strongly basic conditions. From the ionic strength and ethanol content dependencies of the K value in the Langmuir equations, both the electrostatic and hydrophobic interactions were indicated to contribute to the adsorption of the dyes at neutral pH. By comparing the K and q(m) values for the methylene blue congeners and with the aid of the FTIR analyses, it was found that the kind of substituent groups at most positions of the polyheterocycles of methylene blue strongly affects the adsorption behavior, particularly the area occupied by an adsorbed dye molecule, the affinity for the stainless steel surface, and the orientation of the adsorbed dye molecule on the stainless steel surface.  相似文献   

17.
Phenothiazinium dyes are used as photosensitizers in photodynamic therapy. Their mode of action is related to the generation of triplet excited states by intersystem crossing. Therefore, rationalizing the factors that influence intersystem crossing is crucial to improve the efficacy of photodynamic therapy. Here we employ quantum mechanics/molecular mechanics calculations to investigate the effect of aqueous and nucleic acid environments on the intersystem crossing mechanism in methylene blue. We find that the mechanism by which the triplet states are generated depends strongly on the environment. While intersystem crossing in water is mediated exclusively by vibronic spin–orbit coupling, it is enhanced in DNA due to a second pathway driven by electronic spin–orbit coupling. Competing charge‐transfer processes, which are also possible in the presence of DNA, can therefore be suppressed by a suitable structural functionalization, thereby increasing the efficacy of photodynamic therapy.  相似文献   

18.
Poly(styrene‐co‐vinylbenzophenone) prepared by a graft reaction on polystyrene revealed photoactive properties under irradiation of UVA. The photoactive structural features of the polymer were examined via electron paramagnetic resonance (EPR) under irradiation of UVA and fluorescent light. The photoactive functions of the polymer such as antimicrobial performance and dye decolorization ability were investigated. The results revealed that the poly(styrene‐co‐vinylbenzophenone) could generate radicals under fluorescent and UVA irradiation, and some radicals could stay alive for about 30 min in a dark chamber. The photoexcited polymer showed excellent antibacterial ability and decolorization effect on methylene blue and methyl orange dye under both daylight and UVA light. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2423–2430, 2008  相似文献   

19.
Water-soluble derivatives of hypocrellins can be safely delivered in blood plasma but lose their photodynamic activity in vivo due to poor cell uptake, while hydrophobic derivatives retaining their activity may aggregate in the blood plasma and block vascular networks. Considering both drug delivery and biological activity, surfactant-like hypocrellin B (HB) derivatives, sodium 12-2-HB-aminododecanoate (SAHB) and sodium 11,11′-5,8-HB-dimercaptoundecanoate (DMHB), were first designed and then synthesized in the current work. Both SAHB and DMHB were photoactive, generating free radicals and reactive oxygen species, as confirmed by EPR and chemical measurements. Most importantly, DMHB was not only readily soluble, allowing preparation of an intravenous injection solution at a clinically acceptable concentration, but it was also more photodynamic therapy (PDT) active to human breast carcinoma MCF-7 cells than its parent HB under irradiation. The photodynamic activity was exactly identical to the 1O2 quantum yield and was not reduced by the improved water solubility, suggesting an independent hydrophilicity or lipophilicity. To our knowledge, this is a new strategy that possesses general significance for converting hydrophobic photosensitizers into clinically usable PDT drugs.  相似文献   

20.
Abstract Photodynamic therapy has been under investigation as a form of cancer treatment for a number of years. This procedure uses a light source of 630 nm to photoactivate the drug, Photofrin II. Researchers in the past have reported temperature increases during photodynamic therapy, by measuring surface temperature of the tumor or a single point temperature within the tumors. Three temperature points within the tumors have been measured in this study, to quantify the temperature distribution within the lesion. These temperatures were measured for photodynamic therapy treated mice and control mice receiving an exposure to the treatment light without the drug. The use of a filtered xenon arc lamp for the 630 nm light source produced larger temperature increases and thermal gradients within the tumors, than when an Argon dye laser was employed. This temperature increase is due in part to the broad wavelength output of this filtered lamp. When this thermal effect is present during PDT treatment, researchers have observed the development of shock proteins resulting in the induction of thermotolerance and resistance to subsequence hyperthermia treatments. Using the filtered arc lamp, mice receiving photodynamic therapy treatments displayed consistently higher temperature increases than control mice. The use of an argon dye laser, with sufficient air cooling of the tumor, can eliminate this thermal effect. It has been demonstrated that the use of filtered lamps produce thermal effects which cannot be eliminated, demonstrating that lasers should be the primary source of light used to photoirradiate animals for photodynamic therapy studies. The intratumor temperature increases should be documented at multiple positions, to determine the amount of thermotolerance which can be induced. When photodynamic therapy is followed with a subsequent hyperthermia treatment, this induced thermotolerance can then be taken into consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号