首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Let {X n : n ?? 1} be a strictly stationary sequence of positively associated random variables with mean zero and finite variance. Set $S_n = \sum\limits_{k = 1}^n {X_k }$ , $Mn = \mathop {\max }\limits_{k \leqslant n} \left| {S_k } \right|$ , n ?? 1. Suppose that $0 < \sigma ^2 = EX_1^2 + 2\sum\limits_{k = 2}^\infty {EX_1 X_k < \infty }$ . In this paper, we prove that if E|X 1|2+?? < for some ?? ?? (0, 1], and $\sum\limits_{j = n + 1}^\infty {Cov\left( {X_1 ,X_j } \right) = O\left( {n^{ - \alpha } } \right)}$ for some ?? > 1, then for any b > ?1/2 $$\mathop {\lim }\limits_{\varepsilon \searrow 0} \varepsilon ^{2b + 1} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^{b - 1/2} }} {{n^{3/2} \log n}}} E\left\{ {M_n - \sigma \varepsilon \sqrt {2n\log \log n} } \right\}_ + = \frac{{2^{ - 1/2 - b} E\left| N \right|^{2(b + 1)} }} {{(b + 1)(2b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2(b + 1)} }}}$$ and $$\mathop {\lim }\limits_{\varepsilon \nearrow \infty } \varepsilon ^{ - 2(b + 1)} \sum\limits_{n = 1}^\infty {\frac{{(\log \log n)^b }} {{n^{3/2} \log n}}E\left\{ {\sigma \varepsilon \sqrt {\frac{{\pi ^2 n}} {{8\log \log n}}} - M_n } \right\}} _ + = \frac{{\Gamma (b + 1/2)}} {{\sqrt 2 (b + 1)}}\sum\limits_{k = 0}^\infty {\frac{{( - 1)^k }} {{(2k + 1)^{2b + 2} }}} ,$$ where x + = max{x, 0}, N is a standard normal random variable, and ??(·) is a Gamma function.  相似文献   

2.
Для заданной на едини чной окружности огра ниченной функцииω(ξ) рассматр ивается усложненная задача а ппроксимации аналит ическими функциями: $$\mathop {\inf }\limits_{\varphi \in H^\infty } \left[ {\left\| {\omega - \varphi } \right\| + \mathop \Sigma \limits_{k = 0}^\infty \varepsilon _k \left| {\lambda _k } \right|} \right],$$ где ∥·∥ понимается вL ,ε k ≧0 — заданные чис ла, $$\mathop \Sigma \limits_{k = 0}^\infty \varepsilon _k< + \infty ,\varphi (z) = \mathop \Sigma \limits_{k = 0}^\infty \lambda _k z^k .$$ Доказывается, что при всех достаточно малы хε k экстремальной в этой задаче будет функция обычного наилучшего приближения (та же, что и приε k =0,k=0, 1, ...). В частности, при $$\omega (\zeta ) = \frac{{\gamma _0 }}{{\zeta ^n }} + \frac{{\gamma _1 }}{{\zeta ^{n - 1} }} + ... + \frac{{\gamma _{n - 1} }}{\zeta }$$ экстремальной оказы вается дробь Каратео дори—Фейера. Переход к двойственн ой задаче позволяет получить т очные оценки для клас са интегралов типа Коши, выделяемого огранич ениями, наложенными на велич ины коэффициентов ря да Тейлора.  相似文献   

3.
4.
Пустьf 2π-периодическ ая суммируемая функц ия, as k (x) еë сумма Фурье порядк аk. В связи с известным ре зультатом Зигмунда о сильной суммируемости мы уст анавливаем, что если λn→∞, то сущес твует такая функцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _{2n} } } \right\}^{1/\lambda _{2n} } = \infty .$$ Отсюда, в частности, вы текает, что если λn?∞, т о существует такая фун кцияf, что почти всюду $$\mathop {\lim \sup }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } } \right\}^{1/\lambda _n } = \infty .$$ Пусть, далее, ω-модуль н епрерывности и $$H^\omega = \{ f:\parallel f(x + h) - f(x)\parallel _c \leqq K_f \omega (h)\} .$$ . Мы доказываем, что есл и λ n ?∞, то необходимым и достаточным условие м для того, чтобы для всехfH ω выполнялос ь соотношение $$\mathop {\lim }\limits_{n \to \infty } \left\{ {\frac{1}{n}\mathop \sum \limits_{k = n + 1}^{2n} |s_k (x) - f(x)|^{\lambda _n } } \right\}^{1/\lambda _n } = 0(x \in [0;2\pi ])$$ является условие $$\omega \left( {\frac{1}{n}} \right) = o\left( {\frac{1}{{\log n}} + \frac{1}{{\lambda _n }}} \right).$$ Это же условие необхо димо и достаточно для того, чтобы выполнялось соотнош ение $$\mathop {\lim }\limits_{n \to \infty } \frac{1}{{n + 1}}\mathop \sum \limits_{k = 0}^n |s_k (x) - f(x)|^{\lambda _k } = 0(f \in H^\omega ,x \in [0;2\pi ]).$$   相似文献   

5.
Let fL 1( $ \mathbb{T} $ ) and assume that $$ f\left( t \right) \sim \frac{{a_0 }} {2} + \sum\limits_{k = 1}^\infty {\left( {a_k \cos kt + b_k \sin kt} \right)} $$ Hardy and Littlewood [1] proved that the series $ \sum\limits_{k = 1}^\infty {\frac{{a_k }} {k}} $ converges if and only if the improper Riemann integral $$ \mathop {\lim }\limits_{\delta \to 0^ + } \int_\delta ^\pi {\frac{1} {x}} \left\{ {\int_{ - x}^x {f(t)dt} } \right\}dx $$ exists. In this paper we prove a refinement of this result.  相似文献   

6.
Получены новые оценк иL-нормы тригонометр ических полиномов $$T_n (t) = \frac{{\lambda _0 }}{2} + \mathop \sum \limits_{k = 1}^n \lambda _k \cos kt$$ в терминах коэффицие нтовλ k и их разностейΔλ k=λ k?λ k?1: (1) $$\mathop \smallint \limits_{ - \pi }^\pi |T_n (t)|dt \leqq \frac{c}{n}\mathop \sum \limits_{k = 0}^n |\lambda _\kappa | + c\left\{ {x(n,\varphi )\mathop \sum \limits_{k = 0}^n \Delta \lambda _\kappa \mathop \sum \limits_{l = 0}^n \Delta \lambda _l \delta _{\kappa ,l} (\varphi )} \right\}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} ,$$ где $$\kappa (n,\varphi ) = \mathop \smallint \limits_{1/n}^\pi [t^2 \varphi (t)]^{ - 1} dt, \delta _{k,1} (\varphi ) = \mathop \smallint \limits_0^\infty \varphi (t)\sin \left( {k + \frac{1}{2}} \right)t \sin \left( {l + \frac{1}{2}} \right)t dt,$$ a ?(t) — произвольная фун кция ≧0, для которой опр еделены соответствующие инт егралы. Из (1) следует, что методы $$\tau _n (f;t) = (N + 1)^{ - 1} \mathop \sum \limits_{k = 0}^{\rm N} S_{[2^{k^\varepsilon } ]} (f;t), n = [2^{N\varepsilon } ],$$ являются регулярным и для всех 0<ε≦1/2. ЗдесьS m (f, x) частные суммы ряда Фу рье функцииf(x). В статье исследуется многомерный случай. П оказано, что метод суммирования (о бобщенный метод Рисса) с коэффиц иентами $$\lambda _{\kappa ,l} = (R^v - k^\alpha - l^\beta )^\delta R^{ - v\delta } (0 \leqq k^\alpha + l^\beta \leqq R^v ;\alpha \geqq 1,\beta \geqq 1,v< 0)$$ является регулярным, когда δ > 1.  相似文献   

7.
In a bounded domain of the n -dimensional (n?2) space one considers a class of degenerate quasilinear elliptic equations, whose model is the equation $$\sum\limits_{i = 1}^n {\frac{{\partial F}}{{\partial x_i }}} (a^{\ell _i } (u)\left| {u_{x_i } } \right|^{m_i - 2} u_{x_i } ) = f(x),$$ where x =(x1,..., xr), li?0, mi>1, the function f is summable with some power, the nonnegative continuous function a(u) vanishes at a finite number of points and satisfies \(\frac{{lim}}{{\left| u \right| \to \infty }}a(u) > 0\) . One proves the existence of bounded generalized solutions with a finite integral $$\int\limits_\Omega {\sum\limits_{i = 1}^n {a^{\ell _i } (u)\left| {u_{x_i } } \right|^{m_i } dx} }$$ of the Dirichlet problem with zero boundary conditions.  相似文献   

8.
Пусть {Xj} - строго стац ионарная последоват ельностьс ?перемешиванием, EXj-Q,E¦-X j¦r< для некоторогоr>2. Положим \(S_n = \mathop \sum \limits_{j = 1}^n X_j \) . Ибрагимов (1962) доказал, что если приn →∞, то 1 $$\mathop {\lim }\limits_{n \to \infty } P\{ S_n /\sigma _n< x\} = (2\pi )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \mathop \smallint \limits_{ - \infty }^x e^{{{ - u^2 } \mathord{\left/ {\vphantom {{ - u^2 } 2}} \right. \kern-\nulldelimiterspace} 2}} du.$$ В работе установлено, что при указанных выш е условиях в этой центральной пр едельной теореме имеет место т акже и сходимостьr-ых абсолютных моментов, т.е. если σ n 2 →∞ приn→ ∞, то $$\mathop {\lim }\limits_{n \to \infty } E|S_n /\sigma _n |^r = (2\pi )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} \mathop \smallint \limits_{ - \infty }^{ + \infty } |u|^r e^{ - u^2 /2} du.$$ Этот результат обобщ ает один более ранний результат автора (1980 г.).  相似文献   

9.
пУстьλ={λ i} i=1 —пОслЕ ДОВАтЕльНОсть ВЕЩЕс тВЕННых ЧИсЕл сλ i↑∞ Иλ m={λт+ i} i=0 . РАссМАтРМВАУтсь 2π-пЕ РИОДИЧЕскИЕ ФУНкцИИ, Дль кОтОРых $$V_\Lambda (f) = \mathop {\sup }\limits_x \mathop {\mathop {\sup }\limits_{(a_i ,b_i ) \cap (a_j ,b_j ) = \emptyset } }\limits_{(a_i ,b_i ) \subset (x,x + 2\pi ]} \mathop \sum \limits_{\iota = 1}^\infty \frac{{\left| {f(b_i ) - f(a_i )} \right|}}{{\lambda _i }}< \infty ,$$ И Дль кОтОРых $$\mathop {\lim }\limits_{m \to \infty } V_{\Lambda ^m } (f) = 0.$$ ДОкАжАНО, ЧтО УжЕ ВО Вт ОРОМ клАссЕ Есть ВЕжД Е АппРОксИМАтИВНО НЕД ИФФЕРЕНцИРУЕМыЕ ФУН к-цИИ. пОлУЧЕНы ОцЕНкИ кОЁФФИцИЕНтО В ФУРьЕ ЁтИх клАссОВ И НЕкОтОРыЕ РЕжУльтАты ОБ Их ОкОНЧАтЕльНОстИ. кАк слЕДстВИЕ ДАНО ДОстА тОЧНОЕ УслОВИЕ Дль Их НЕсОВп АДЕНИь.  相似文献   

10.
В работе доказываютс я следующие утвержде ния. Теорема I.Пусть ? n ↓0u \(\sum\limits_{n = 0}^\infty {\varepsilon _n^2 = + \infty } \) .Тогд а существует множест во Е?[0, 1]с μЕ=0 такое что:1. Существует ряд \(\sum\limits_{n = 0}^\infty {a_n W_n } (t)\) с к оеффициентами ¦а n ¦≦{in¦n¦, который сх одится к нулю всюду вне E и ε∥an∥>0.2. Если b n ¦=о(ε n )и ряд \(\sum\limits_{n = 0}^\infty {b_n W_n (t)} \) сх одится к нулю всюду вн е E за исключением быть может некоторого сче тного множества точе к, то b n =0для всех п. Теорема 3.Пусть ? n ↓0u \(\mathop {\lim \sup }\limits_{n \to \infty } \frac{{\varepsilon _n }}{{\varepsilon _{2n} }}< \sqrt 2 \) Тогд а существует множест во E?[0, 1] с υ E=0 такое, что:
  1. Существует ряд \(\sum\limits_{n = - \infty }^{ + \infty } {a_n e^{inx} ,} \sum\limits_{n = - \infty }^{ + \infty } {\left| {a_n } \right|} > 0,\) кот орый сходится к нулю в сюду вне E и ¦an≦¦n¦ для n=±1, ±2, ...
  2. Если ряд \(\sum\limits_{n = - \infty }^{ + \infty } {b_n e^{inx} } \) сходится к нулю всюду вне E и ¦bv¦=о(ε ¦n¦), то bn=0 для всех я. Теорема 5. Пусть послед овательности S(1)={ε 0 (1) , ε 1 (1) , ε 2 (1) , ...} u S2 0 (2) , ε 1 (2) . ε 2 (2) монотонно стремятся к нулю, \(\mathop {\lim \sup }\limits_{n \to \infty } \varepsilon ^{(i)} /\varepsilon _{2n}^{(i)}< 2,i = 1,2\) , причем \(\mathop {\lim }\limits_{n \to \infty } \varepsilon _n^{(2)} /\varepsilon _n^{(i)} = + \infty \) . Тогда для каждого ε>O н айдется множество Е? [-π,π], μE >2π — ε, которое является U(S1), но не U(S1) — множеством для тригонометричес кой системы. Аналог теоремы 5 для си стемы Уолша был устан овлен в [7].
  相似文献   

11.
12.
13.
Пусть (X, A, u) — пространст во с конечной мерой, (ξk) 1 — последовательност ь функций, \(\xi _k \varepsilon L_{2r} (X), r > 1, \int\limits_X {\xi _k d\mu = 0} \) . Изучаются условия, п ри которых справедли вgа - у. з. б.ч., т. e. (ξ k) суммируется к ну лю почти всюду методо м (С, а),а > 0. Приведем два резу льтата. 1) Если (ξ k) — слабо мульт ипликативная систем а (в частности, мартингал-разности или независимая сист ема), то условие $$\mathop \sum \limits_1^\infty \mathop {\smallint }\limits_X \left| {\xi _k } \right|^{2r} d\mu \cdot c_r (k,\alpha )< \infty $$ влечетβ - у.з.б.ч. Здесьc r(k,α)=k -2rα при 0<α<(r+1)/2r, cr=k?(r+1) In3r-1 k приа=(r+1)/2r, сr=k?(r+1) при а >(r+1)/2r. 2) Если (ξ k) независимы, k=0, (r+1)/2r<α=1, то условия $$\mathop \sum \limits_{k = 1}^\infty \frac{{(M\xi _k^2 )^r }}{{k^{r + 1} }}< \infty ,\mathop \sum \limits_{k = 1}^\infty \frac{{M|\xi _k |^{2r} }}{{k^{2r\alpha } }}< \infty $$ влекут за собой а - у. з. б. ч.  相似文献   

14.
The following statement is proved: Theorem.Let f(x), 0≦x≦2π, possess the Fourier expansion $$\mathop \sum \limits_{\kappa = - \infty }^\infty c_\kappa e^{in} \kappa ^x with \bar c_\kappa = c_{ - \kappa } , n_\kappa = - \bar n_{ - \kappa }$$ where {n k } is a Sidon sequence. Then in order to have $$\mathop \sum \limits_{\kappa = - \infty }^\infty |c_\kappa |^p< \infty$$ for a given p, 1 $$\mathop \sum \limits_{k = 1}^\infty \left( {\frac{{\left\| f \right\|L^k (0,2\pi )}}{k}} \right)^p< \infty$$ . An analogous statement holds true for series with respect to the Rademacher system.  相似文献   

15.
We consider integral functionals in which the density has growth p i with respect to ${\frac{\partial u}{\partial x_i}}$ , like in $$\int\limits_{\Omega}\left( \left| \frac{\partial u}{\partial x_1}(x) \right|^{p_1} + \left|\frac{\partial u}{\partial x_2}(x)\right|^{p_2} + \cdots + \left|\frac{\partial u}{\partial x_n}(x) \right|^{p_n} \right) dx.$$ We show that higher integrability of the boundary datum forces minimizer to be more integrable.  相似文献   

16.
Quasi-normed Lorentz spaces Λψ, q of 2π-periodic functions with quasinorms $$\left\| f \right\|_{\psi ,q} = \left\{ {\int\limits_0^{2\pi } {\psi ^q (t)\left[ {\frac{1}{t}\int\limits_0^t {f * (x)} dx} \right]} ^q \frac{{dt}}{t}} \right\}^{{1 \mathord{\left/ {\vphantom {1 q}} \right. \kern-\nulldelimiterspace} q}} $$ (0<q<∞,ω(t): [0,2π]→R is a continuous concave function with finite derivative everywhere on (0, 2gp)) and classes of functions $$H_{\psi ,q}^\omega \equiv \{ f(x):f(x) \in \Lambda _{\psi ,q} ;\mathop {\sup }\limits_{0 \leqq h \leqq \delta } \left\| {f(x + h) - f(x)} \right\|_{\psi ,q} = O\{ \omega (\delta )\} , \delta \to + 0\} $$ (ω(δ) — modulus of continuity) are studied. Precise embedding conditions of classes H ψ, q ω into Lorentz spaces and into each other are obtained: $$\begin{array}{*{20}c} {H_{\psi ,q_1 }^\omega \subset \Lambda _{\psi ,q_2 } ;} & {H_{\psi ,q_1 }^\omega \subset {\rm H}_{\psi ,q_2 }^{\omega * } ,} & {0< q_2< q_1< \infty ,} \\ \end{array} $$ under conditions \(\mathop {\lim }\limits_{t \to \infty } \frac{{\psi (2t)}}{{\psi (t)}} > 1,\mathop {\overline {\lim } }\limits_{x \to \infty } \frac{{\psi (2t)}}{{\psi (t)}}< 2\) andω(δ)=O{ω(δ 2)},δ→+0, andω * (δ) is an arbitrary modulus of continuity.  相似文献   

17.
В РАБОтЕ ДАЕтсь ОтВЕт НА ОДИН ВОпРОс, пОстАВ лЕННыИ В. г. кРОтОВыМ. УстАНОВлЕН О, ЧтО ЕслИ Ф(х) — МОНОтОННО ВО жРАстАУЩАь ФУНкцИь,Ф (0)=0, Ф(2х)≦кФ(х), х[0, ∞), тО $$\left\{ {f:\left\| {\sum\limits_{k = 1}^\infty {\mu _k \Phi (\lambda _k \left| {S_k - f} \right|)} } \right\|_c< \infty } \right\} \subseteqq C \Leftrightarrow \sum\limits_{k = 1}^\infty {\mu _k } \Phi (\lambda _k ) = \infty $$ Дль пРОИжВОльНых НЕО тРИцАтЕльНых ЧИслОВ ых пОслЕДОВАтЕльНОстЕ И {Μk} И {λk}. (жДЕсьS k ОБОжНАЧАЕт ЧАстНУУ с УММУ пОРьДкАk РьДА ФУ РьЕ ФУНкцИИf). УстАНОВлЕН О тАкжЕ, ЧтО ВО МНОгИх слУЧАьх $$\left\{ {f:\left\| {\sum\limits_{k = 1}^\infty {\mu _k \Phi (\lambda _k \left| {\tilde S_k - \tilde f} \right|)} } \right\|_c< \infty } \right\} \subseteqq C \Leftrightarrow \sum\limits_{k = 1}^\infty {\frac{1}{{k\lambda _k }}} \Phi ^{ - 1} \left( {\frac{1}{{k\mu _k }}} \right)< \infty .$$   相似文献   

18.
Suppose f∈Hp(Tn), 0 r δ , δ=n/p?(n+1)/2. In this paper we eastablish the following inequality $$\mathop {\sup }\limits_{R > 1} \left\{ {\frac{1}{{\log R}}\int_1^R {\left\| {\sigma _r^\delta } \right\|_{H^p (T^R )}^p \frac{{dr}}{r}} } \right\}^{1/p} \leqslant C_{R,p} \left\| f \right\|_{H^p (T^R )} $$ It implies that $$\mathop {\lim }\limits_{R \to \infty } \frac{1}{{\log R}}\int_1^R {\left\| {\sigma _r^\delta - f} \right\|_{H^p (T^R )}^p \frac{{dr}}{r}} = 0$$ Moreover we obtain the same conclusion when p=1 and n=1.  相似文献   

19.
В работе для неотрица тельных последовате льностей (...,a ?1 i ), aa 0 i ),a 1 i ), ...), удовлетв оряющих условию \(0< \mathop {\sup }\limits_k a_k^{(i)}< \infty\) (i=1,...,т), доказ а но неравенство (1) $$\begin{gathered} \mathop \sum \limits_{k = - \infty }^\infty \mathop {\sup }\limits_{k \leqq k_1 + \ldots + k_m \leqq k + l} (a_{k_1 }^{(1)} \ldots a_{k_m }^{(m)} ) \geqq \hfill \\ \geqq \mathop \prod \limits_{i = 1}^m (\mathop {\sup }\limits_{ - \infty< k< \infty } a_k^{(i)} )\left[ {\mathop \sum \limits_{i = 1}^m \frac{{\mathop \sum \limits_{k = - \infty }^\infty (a_k^{(i)} )^{p_i } }}{{(\mathop {\sup }\limits_{ - \infty< k< \infty } a_k^{(i)} )^{p_i } }} + l - m + 1} \right], \hfill \\ \end{gathered}$$ гдеl произвольное не отрицательное целое число, 1≦p 1, ...,p m ≦∞ и \(\mathop \sum \limits_{i = 1}^m p_i^{ - 1} = 1\) . Это неравенство явля ется обобщением и уто чнением неравенств А. Прекопа, Ш. Данча и Л. Лейндлера. Доказано также, что ес ли все последователь ности содержат только коне чное число ненулевых членов, то н еобходимым условием для равенства в (1) является существование такого числа α>0, чтоa k( i )=а илиa k( i )=0 для всехi=1,...,m;?∞<k<∞.  相似文献   

20.
The paper is devoted to the study of the weak norms of the classical operators in the vector-valued setting.
  1. Let S, H denote the singular integral involution operator and the Hilbert transform on $L^p \left( {\mathbb{T}, \ell _\mathbb{C}^2 } \right)$ , respectively. Then for 1 ≤ p ≤ 2 and any f, $$\left\| {\mathcal{S}f} \right\|_{p,\infty } \leqslant \left( {\frac{1} {\pi }\int_{ - \infty }^\infty {\frac{{\left| {\tfrac{2} {\pi }\log \left| t \right|} \right|^p }} {{t^2 + 1}}dt} } \right)^{ - 1/p} \left\| f \right\|p,$$ $$\left\| {\mathcal{H}f} \right\|_{p,\infty } \leqslant \left( {\frac{1} {\pi }\int_{ - \infty }^\infty {\frac{{\left| {\tfrac{2} {\pi }\log \left| t \right|} \right|^p }} {{t^2 + 1}}dt} } \right)^{ - 1/p} \left\| f \right\|p.$$ Both inequalities are sharp.
  2. Let P + and P ? stand for the Riesz projection and the co-analytic projection on $L^p \left( {\mathbb{T}, \ell _\mathbb{C}^2 } \right)$ , respectively. Then for 1 ≤ p ≤ 2 and any f, $$\left\| {P + f} \right\|_{p,\infty } \leqslant \left\| f \right\|_p ,$$ $$\left\| {P - f} \right\|_{p,\infty } \leqslant \left\| f \right\|_p .$$ Both inequalities are sharp.
  3. We establish the sharp versions of the estimates above in the nonperiodic case.
The results are new even if the operators act on complex-valued functions. The proof rests on the construction of an appropriate plurisubharmonic function and probabilistic techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号