首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chenjie Zhu  Lei Ji 《合成通讯》2013,43(14):2057-2066
An efficient, facile, and rapid oxidation of alcohols to the corresponding aldehydes or ketones with a stoichiometric amount of iodosobenzene (PhIO) in the presence of catalytic amounts of 2,2,6,6-tetramethyl-1-piperidinyloxyl free radical (TEMPO), KBr, and a surfactant, such as SDS (sodium dodecylsulfate), was reported. The oxidation proceeded in water at room temperature to afford aldehydes or ketones in excellent yields and high selectivity without overoxidation to carboxylic acids. Selective oxidation of primary alcohols in the presence of secondary alcohols was also achieved with the catalytic system of PhIO/TEMPO/KBr/SDS. A possible mechanism for the oxidation was supposed.  相似文献   

2.
Catalytic phosphorus(V)-mediated chlorination and bromination reactions of alcohols have been developed. The new reactions constitute a catalytic version of the classical Appel halogenation reaction. In these new reactions oxalyl chloride is used as a consumable stoichiometric reagent to generate the halophosphonium salts responsible for halogenation from catalytic phosphine oxides. Thus, phosphine oxides have been transformed from stoichiometric waste products into catalysts and a new concept for catalytic phosphorus-based activation and nucleophilic substitution of alcohols has been validated. The present study has focused on a full exploration of the scope and limitations of phosphine oxide catalyzed chlorination reactions as well as the development of the analogous bromination reactions. Further mechanistic studies, including density functional theory calculations on proposed intermediates of the catalytic cycle, are consistent with a catalytic cycle involving halo- and alkoxyphosphonium salts as intermediates.  相似文献   

3.
Intramolecular diamination reactions are described which yield cyclic ureas as direct products of an oxidative alkene transformation in the presence of palladium acetate and iodosobenzene diacetate as terminal oxidant. The reaction is truly catalytic in metal catalyst and represents the proof of principle for this elusive type of alkene oxidation.  相似文献   

4.
[reaction: see text] The catalytic oxidation of the allylic alcohols 1d-n with iodosobenzene diacetate, mediated by the [Cr(III)(salen)]X complex, affords the respective enones in excellent chemoselectivity for Cl(-) as counterion [complex A(Cl)], while for the counterions TfO(-) [complex A(TfO)] and PF(6)(-) [complex A(PF(6)())] nearly equal amounts of enone and epoxide are observed. This counterion-dependent oxidation of allylic alcohols by Cr(III)(salen) complexes is rationalized in terms of Lewis acid catalysis by the complex A(Cl) and redox catalysis for A(TfO) and A(PF(6)()).  相似文献   

5.
The entitled compounds 2 are regiospecifically and stereoselectively obtained by reaction of the Grignard reagent of chloromethyltrimethylsilane 3 with the phosphates 8 of diversely substituted α-allenic alcohols. In the case of the phosphates of secondary alcohols, the reaction has to be assisted by catalytic quantities of a Palladium (O) complex.  相似文献   

6.
Several selectively protected spermidine homologues were synthesized via cyanoethylation reaction of monoprotected diamines, subsequent protection of their secondary amino group, hydrolysis of nitrile to primary amide function, and final Hofmann degradation of amides to amines with the aid of iodosobenzene diacetate (PIDA). The protected spermidine homologues may be directly used in the synthesis of polyamine amides or may be further functionalized.  相似文献   

7.
The scope and limitations of the ruthenium-catalyzed propargylic substitution reaction of propargylic alcohols with heteroatom-centered nucleophiles are presented. Oxygen-, nitrogen-, and phosphorus-centered nucleophiles such as alcohols, amines, amides, and phosphine oxide are available for this catalytic reaction. Only the thiolate-bridged diruthenium complexes can work as catalysts for this reaction. Results of some stoichiometric and catalytic reactions indicate that the catalytic propargylic substitution reaction proceeds via an allenylidene complex formed in situ, whereby the attack of nucleophiles to the allenylidene C(gamma) atom is a key step. Investigation of the relative rate constants for the reaction of propargylic alcohols with several para-substituted anilines reveals that the attack of anilines on the allenylidene C(gamma) atom is not involved in the rate-determining step and rather the acidity of conjugated anilines of an alkynyl complex, which is formed after the attack of aniline on the C(gamma) atom, is considered to be the most important factor to determine the rate of this catalytic reaction. The key point to promote this catalytic reaction by using the thiolate-bridged diruthenium complexes is considered to be the ease of the ligand exchange step between a vinylidene ligand on the diruthenium complexes and another propargylic alcohol in the catalytic cycle. The reason why only the thiolate-bridged diruthenium complexes promote the ligand exchange step more easily with respect to other monoruthenium complexes in this catalytic reaction should be that one Ru moiety, which is not involved in the allenylidene formation, works as an electron pool or a mobile ligand to another Ru site. The catalytic procedure presented here provides a versatile, direct, and one-step method for propargylic substitution of propargylic alcohols in contrast to the so far well-known stoichiometric and stepwise Nicholas reaction.  相似文献   

8.
A new catalytic system for beta-alkylation of secondary alcohols has been developed. In the presence of [CpIrCl(2)](2) (Cp = pentamethylcyclopentadienyl) catalyst and base, the reactions of various secondary alcohols with primary alcohols give beta-alkylated higher alcohols in good to excellent yields without any hydrogen acceptor or hydrogen donor. This reaction proceeds via successive hydrogen-transfer reactions and aldol condensation. [reaction: see text]  相似文献   

9.
Allyl diethyl phosphate (ADP) was found to function as a stoichiometric hydrogen acceptor in a catalytic oxidation reaction of alcohols with Pd(OAc)2. A variety of acyclic primary and secondary alcohols were oxidized in good yields and under mild conditions to the corresponding aldehydes and ketones, in the presence of Na2CO3 or K2CO3. Simple aliphatic primary alcohols yielded esters, exclusively. Polar ligand solvents (DMF, DMSO) were found to accelerate the reaction. Slow, but high yield reactions were encountered in THF and acetonitrile as solvents. The reactivity of several other allyl systems serving as H-acceptors, and several Pd compounds serving as catalysts, in the above oxidation reaction, was evaluated. It has been experimentally demonstrated (H-NMR) that ADP is capable of generating a π-allyl-Pd complex using a Pd(0) complex. Consequently, a catalytic cycle was proposed for the above oxidation reaction.  相似文献   

10.
In this paper, rapid and highly efficient trimethylsilylation of alcohols and phenols with hexamethyldisilazane (HMDS) in the presence of catalytic amounts of high‐valent [SnIV(TPP)(OTf)2] is reported. This catalytic system catalyzes trimethylsilylation of primary, secondary and tertiary alcohols as well as phenols, and the corresponding TMS‐ethers were obtained in high yields and short reaction times at room temperature. It is noteworthy that this method can be used for chemoselective silylation of primary alcohols in the presence of secondary and tertiary alcohols and phenols. The catalyst was reused several times without loss of its catalytic activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Y. Ohbe  M. Takagi  T. Matsuda 《Tetrahedron》1974,30(16):2669-2675
The reactions of allyl bromide and crotyl chloride with Grignard reagent catalyzed by π-allyl and crotyl metal complexes of nickel, cobalt, and iron, and the stoichiometric reaction of the complexes with the Grignard reagent have been examined. The similarity in catalytic behaviour of the complex and the corresponding metallic halide affords further evidence in support of the previous proposal that the π-allylic metal intermediate plays an important role in the catalytic reaction. The stoichiometric reaction suggests that the dependence of distribution of product in the catalytic process on the type of both allylic halide and metal is attributable to the facility of ligand exchange between the π-allylic complex and Grignard reagent.  相似文献   

12.
The direct trifluoromethylation of a variety of aliphatic alcohols using a hypervalent iodosulfoximine reagent afforded the corresponding ethers in moderate to good yields (14–72 %). Primary, secondary, and even tertiary alcohols, including examples derived from natural products, underwent this transformation in the presence of catalytic amounts of zinc bis(triflimide). Typical reaction conditions involved a neat mixture of 6.0 equivalents of the alcohol with 1.0 equivalent of the reagent, with the majority of reactions complete within 2 h with 2.5 mol % of the Lewis acid catalyst. Furthermore, experimental evidence was provided that the C−O bond-forming process occurred via the coordination of the alcohol to the iodine atom and subsequent reductive elimination.  相似文献   

13.
Activation of the Si-B inter-element bond with copper(I) alkoxides produces copper-based silicon nucleophiles that react readily with aldehydes to yield α-silyl alcohols (that is, α-hydroxysilanes) after hydrolysis. Two independent protocols were developed, one employing a well-defined NHC-CuOtBu complex and one using the simple CuCN-NaOMe combination without added ligand. The mechanism of the aldehyde addition was investigated in detail by stoichiometric and catalytic experiments as well as NMR spectroscopic measurements. The primary reaction product of the addition of the Si-B reagent and the aldehyde (a boric acid ester of the α-silyl alcohol) and also the "dead-end" intermediate, formed in the competing [1,2]-Brook rearrangement, were characterized crystallographically. Based on these data, a reasonable catalytic cycle is proposed. The NHC-CuOtBu catalytic setup performs nicely at elevated temperature. A more reactive catalytic system is generated from CuCN-NaOMe, showing fast turnover at a significantly lower temperature. Both aromatic and aliphatic aldehydes are transformed into the corresponding α-silyl alcohols in good to very good yields under these mild reaction conditions.  相似文献   

14.
Phenylseleno-acetoxylation, hydroxylation, etherification and lactonization products are obtained in good yields from the reaction of alkenes with diphenyl diselenide and iodosobenzene diacetate, in acetonitrile.

  相似文献   

15.
An efficient catalytic system for the alkylation of amines with either alcohols or amines under mild conditions has been developed, using cyclometallated iridium complexes as catalysts. The method has broad substrate scope, allowing for the synthesis of a diverse range of secondary and tertiary amines with good to excellent yields. By controlling the ratio of substrates, both mono‐ and bis‐alkylated amines can be obtained with high selectivity. In particular, methanol can be used as the alkylating reagent, affording N‐methylated products selectively. A strong solvent effect is observed for the reaction.  相似文献   

16.
The use of commercially available (SIPr)Pd(cinnamyl)Cl (SIPr = 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene) as a precatalyst for the anaerobic oxidation of secondary alcohols is described. The use of this complex allows for a drastic reduction in the reaction times and catalyst loading when compared to the unsaturated counterpart. This catalytic system is compatible with the use of microwave dielectric heating, decreasing even further catalyst loading and reaction times. Domino Pd-catalyzed oxidation-arylation reactions of secondary alcohols are also presented.  相似文献   

17.
A variety of di- and trifluoromethyl-s-triazines are prepared following straightforward synthetic protocols from simple, commercially available starting materials. Trichloromethyl-substituted triazine electrophiles are obtained in good yield and react with amine nucleophiles to afford aminotriazine products in good to excellent yield. The nucleophilic aromatic substitution reaction is broad in scope and proceeds smoothly with both aromatic and aliphatic (primary, secondary, and branched) amines in the presence of non-participating functional groups including alcohols, carboxylic acids, indoles, and common amine protecting groups. Furthermore, most reactions require only a catalytic amount of 4-DMAP with no stoichiometric base and are complete within two hours at ambient temperature.  相似文献   

18.
Polystyrene‐supported gallium trichloride (PS/GaCl3) as a highly active and reusable heterogeneous Lewis acid effectively activates hexamethyldisilazane (HMDS) for the efficient silylation of alcohols and phenols at room temperature. In this heterogeneous catalytic system, primary, secondary, and tertiary alcohols as well as phenols were converted to their corresponding trimethylsilyl ethers with short reaction times and high yields under mild reaction conditions. The heterogenized catalyst is of high reusability and stability in the silylation reactions and was recovered several times with negligible loss in its activity or a negligible catalyst leaching, and also there is no need for regeneration. It is noteworthy that this method can be used for chemoselective silylation of different alcohols and phenols with high yields.  相似文献   

19.
A novel and practical catalytic method for efficient and highly selective oxidation of a wide range of benzylic, allylic, aliphatic, primary, and secondary alcohols to the corresponding aldehydes and ketones using tetrabutylammonium peroxomonosulfate catalyzed by tetradentate Schiff base–MnIII complexes has been developed. Electron‐deficient and hindered alcohols required longer reaction times for oxidation in this catalytic system. The electron‐poor and hindered salicylidene ring of the ligand enhanced the catalytic activity and stability of Mn catalysts. The desired turnover numbers obtained in the oxidation reactions indicated the high efficiency and relative stability of these simple Schiff base complexes in this catalytic system.  相似文献   

20.
Selective oxidation of alcohols to the corresponding carbonyl compounds is one of the most fundamental reactions in organic synthesis. Traditional methods for this transformation generally rely on stoichiometric amount of oxidants represented by Cr(VI) or DMSO reagents, though their synthetic utility is encumbered by unpleasant waste materials. From ecological and atom-economic viewpoints, catalytic aerobic oxidation is much more advantageous because molecular oxygen is ubiquitous and the byproduct is basically non-toxic water or hydrogen peroxide. On the other hand, phenol derivatives undergo oxidative coupling, forming C-C or C-O bond, through radical intermediates coupled with an electron-transfer process. Molecular oxygen is also well known to serve as electron acceptor in this reaction. Thus, a variety of transition metal complexes have so far been examined for aerobic oxidations of alcohols and phenols, and high catalytic activities have been achieved in some cases. However, stereo- and chemo-selective aerobic oxidations are still limited in number and are of current interest. Presented in this paper is our recent studies on catalytic aerobic oxidations with photoactivated nitrosyl ruthenium-salen complexes, including asymmetric oxidation of secondary alcohols to ketones (kinetic resolution), enantioselective oxidative coupling of 2-naphthols to binaphthols and oxygen-radical bicyclization of 2,2'-dihydroxystilbene, chemoselective oxidation of primary alcohols to aldehydes and diols to lactols, and asymmetric desymmetrization of meso-diols to lactols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号