首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polymer blends can be either composed of mixtures of flexible components, of a stiff chain and a flexible macromolecule, or of two stiff-chain polymers. All three cases may be dealt with in terms of the Flory lattice model. Special attention is paid to the influence of liquid crystalline order on the miscibility of the two polymers. For isotropic mixtures all three cases may be described in terms of the usual Flory–Huggins approximation. If a nematic phase is formed the miscibility of blends of rigid rods with flexible macromolecules (molecular composites) is strongly reduced because of entropic reasons. Highly ordered mixture of two stiff-chain polymers in melt can be described in terms of the regular solution theory leading to the same miscibility criterion as is valid for two flexible polymers. All deductions are compared to recent experimental work.  相似文献   

2.
We demonstrate reversible photoinduced in situ reorientation of low molecular mass liquid crystals (LCs) by means of photoaddressable polymers (PAPs). These polymers contain mesogenic azobenzene side chains optimized to reorient cooperatively and effectively upon illumination with polarized light. Various low molecular mass LCs were introduced between two PAP layers and these sandwich devices were tested with respect to stability and reversibility of photoinduced orientation. Dissolution of the PAP layer by the low molecular mass LC was observed for several material combinations and systematically investigated. Different anisotropic dyes were added as fluorescence markers in order to monitor the photoinduced LC orientation. With an optimized material combination, more than 10 reversible reorientation processes could be realized with polarized light of either 514 or 405 nm wavelength, without any reduction in alignment quality. Further, microscopic polarized fluorescence patterns could be produced and erased within short exposure times.  相似文献   

3.
We demonstrate reversible photoinduced in situ reorientation of low molecular mass liquid crystals (LCs) by means of photoaddressable polymers (PAPs). These polymers contain mesogenic azobenzene side chains optimized to reorient cooperatively and effectively upon illumination with polarized light. Various low molecular mass LCs were introduced between two PAP layers and these sandwich devices were tested with respect to stability and reversibility of photoinduced orientation. Dissolution of the PAP layer by the low molecular mass LC was observed for several material combinations and systematically investigated. Different anisotropic dyes were added as fluorescence markers in order to monitor the photoinduced LC orientation. With an optimized material combination, more than 10 reversible reorientation processes could be realized with polarized light of either 514 or 405 nm wavelength, without any reduction in alignment quality. Further, microscopic polarized fluorescence patterns could be produced and erased within short exposure times.  相似文献   

4.
In-situ formation of polyimide was carried out in solution of copolymers derived from styrene and 4-vinylpyridine. The in-situ formed polyamic acid formed a strong hydrogen-bonding with pyridine moiety of the copolymers, resulting in homogeneous solutions. Cast films obtained from the solutions were clear and transparent without phase separations, and mechanical properties of the films were much stronger than those of films from the original copolymers. In-situ polymerization of acrylamide in poly(styrene) was carried out by anionic polymerization to form Nylon 3 which was dispersed in poly(styrene) as fine particles, and mechanical properties of the poly (styrene) were greatly improved.  相似文献   

5.
Difunctional acrylates and methacrylate monomers have been made which are high order smectic liquid crystal (or crystalline) at room temperature. This report discusses materials with the following structure: F–S–M–S–F, where F is a functional group, acrylate or methacrylate (A or M); S is a spacer (CH2)n(n), and M is a mesogen—in this case 4,4′-dioxybiphenyl (B). They are codified as BnA or BnM where n is the number of methylenes in the spacer. High conversion with high Tg can be obtained when polymerizing in the smectic state because the reactive end groups are concentrated in a small volume and can react well with little or no diffusion. B2A, B3A, B6A, B11A, and B3M were polymerized in the smectic state and compared to polymers made at temperatures where the monomers were isotropic. High conversion was obtained below final Tg—even then, probably because the polymers were ordered. All the polymers were studied by WAXD and dynamic mechanical spectroscopy. Solid-state NMR on B3A showed that there was very high conversion of the double bonds at all temperatures. B3A photopolymerized in the smectic state (60–76°C) produced a crystalline polymer with Tg = 185°C (1 Hz). When photopolymerized at 85°C, above the isotropization temperature (Ti), a poorly organized polymer was obtained with a Tg of 155°C (1 Hz). Monomers with an odd number of methylene groups as spacers were crystalline after polymerization. With an even number of methylene groups, they lost most of their crystallinity on polymerization below Ti, but retained a low order smectic structure. Similar structures were obtained with all the monomers when they were polymerized above Ti. There was little effect of polymerization temperature on Tg when the spacers had an even number of methylene groups. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Well-defined liquid crystal gels from telechelic polymers   总被引:1,自引:0,他引:1  
Well-defined liquid crystal networks with controlled molecular weight between cross-links and cross-link functionality were prepared by "click" cross-linking of telechelic polymers produced by ring-opening metathesis polymerization (ROMP). The networks readily swell in a small molecule liquid crystal, 5CB, to form LC gels with high swelling ratios. These gels exhibit fast, reversible, and low-threshold optic switching under applied electric fields when they are unconstrained between electrodes. For a given electric field, the LC gels prepared from shorter telechelic polymers showed a reduced degree of switching than their counterparts made from longer polymer strands. The reported approach provides control over important parameters for LC networks, such as the length of the network strands between cross-links, cross-linker functionality, and mesogen density. Therefore, it allows a detailed study of relationships between molecular structure and macroscopic properties of these scientifically and technologically interesting networks.  相似文献   

7.
Side-chain liquid crystal polyacrylates and polysiloxanes containing different photochromic spironaphthoxazine side groups were synthesized. Thermodynamic, spectral and kinetic properties of the polymers were investigated. The structure of the mesophase is discussed.  相似文献   

8.
A theory for the shear flow instability in a liquid crystal aligned by the initial flow is presented. We have investigated a periodic distortion of the director and the velocity field in the plane perpendicular to the velocity gradient. We present solutions for the director and velocity field and make a connection with the optical image observed under a polarizing microscope. We include the convective terms in the basic equations neglected previously, and show that they alter the values of the critical parameters, but do not change the instability mechanism. Comparison with experimental data is made and further experiments are suggested.  相似文献   

9.
10.
A simple phenomenological approach is proposed in order to predict the presence of minima in the viscosity-composition curves of blends of thermoplastic with liquid crystal polymer (LCP). When the viscosity of the liquid crystal polymer is larger than that of the thermoplastic matrix, a minimum is observed. A possible explanation of the presence of yield stress in the flow curves of these blends is also given.  相似文献   

11.
Blends in which both of the component materials are capable of forming liquid crystalline phases are considered in the present work. Solid-state characterization data are presented that suggest that chemical reaction is not a dominant event when two such materials are blended in the melt. Also, ideas of small-molecule liquid crystal mixing are shown to be not applicable to describe the behavior of this system. A formalism for describing blends of liquid crystal polymers, based on Windle's sequence matching arguments, is proposed.  相似文献   

12.
Experimental data on the processing behavior and on the rheological and mechanical properties of blends with a liquid crystal polymer as one component are presented. The blends with low amounts of LCP show easier processability and lower viscosity than the thermoplastic matrix. The elastic modulus is also improved. The reduction of viscosity has been attributed to the lower pressure entry, due to the formation of fibrils and to the immiscibility of the two phases.  相似文献   

13.
《Liquid crystals》1997,22(2):203-210
IR spectroscopy was used to study the orientation and mobility of different molecular segments in a side chain ferroelectric liquid crystalline polymer (FLCP) in the book-shelf geometry. It was directly shown that the tilt angles for the mesogenic units and the spacers are different. The data obtained allowed us to construct a detailed model of segmental orientation in the SC phase for this FLCP. This model is consistent with the 'zigzag' model for tilted smectic phases. The rotational bias of carbonyl bonds is also confirmed and a possible orientation function for the carbonyl group is discussed. Time-resolved step-scan FTIR spectroscopy enabled us to follow the intra- and inter-molecular response of the FLCP to an external electric field with a time resolution of 5 mus. It was detected that mesogenic moiety, spacer and backbone take part in the reorientation process. The time responses of different molecular segments are similar on the time scale of a few hundred microseconds.  相似文献   

14.
The syntheses of two side chain liquid crystal polymers, a polyacrylate and a polymethacrylate, are reported. In each of the polymers the liquid-crystalline side group carries an asymmetric carbon atom, thereby making some of the liquid crystal phases formed by the polymers optically active and chiral. For the chiral polyacrylate smectic A and chiral ferroelectric smectic C phases are observed, however for the chiral polymethacrylate a cholesteric phase is detected above the smectic A phase. It is found that the smectic A to cholesteric phase transition is mediated by the formation of an intermediary twisted smectic A phase. This intermediary phase is a liquid-crystalline analogue of the Abrikosov flux phase found in Type II superconductors.  相似文献   

15.
We investigate the relaxation phenomena in a polymer (polystyrene)/liquid crystal (4-cyano-4'-n-octyl-biphenyl) system, in its homogeneous isotropic phase near the isotropic-isotropic, isotropic-nematic, and isotropic-smectic coexistence curve, using both polarized and depolarized photon correlation spectroscopy (PCS). We study this system for different polystyrene molecular weights (4750, 12 500, and 65 000 g/mol), different compositions (50, 40, 30, and 10% polystyrene (PS) by weight), and different temperatures close to phase boundaries. First of all, we determine the phase diagrams of this system for the different molecular weights. The shape of the phase diagrams strongly depends on the molecular weight. However, in all cases, at low temperatures, these systems separate into an almost pure liquid crystalline (LC) phase and polystyrene-rich phase. PCS measurements show that the relaxation processes in the homogeneous phase are not affected by the proximity of the nematic, or smectic, boundaries (even at a temperature of 0.1 degrees C above the phase separation in two phases). In polarized PCS experiments, we always see three relaxation processes well separated in time: one, very fast, with a relaxation time of the order of 10(-5) s; a second one with a relaxation time within the range 10(-2)-10(-3) s; and a last one, very slow, with a relaxation time of the order of 1 s. Both the fast and slow modes are independent of the wave vector magnitude, while the intermediate relaxation process is diffusive. In depolarized PCS experiments, the intermediate mode disappears and only the fast and slow relaxation processes remain, and they are independent of the magnitude of the wave vector. The diffusive mode is the classical diffusive mode, which is associated with the diffusion of polymer chains in all polymer solutions. The fast mode is due to the rotational diffusion of 4-cyano-4'-n-octyl-biphenyl (8CB) molecules close to polystyrene chains (transient network). Finally, we assign the slowest mode to reorientational processes of small aggregates of PS chains that are not dissolved in 8CB.  相似文献   

16.
Abstract

The syntheses of two side chain liquid crystal polymers, a polyacrylate and a polymethacrylate, are reported. In each of the polymers the liquid-crystalline side group carries an asymmetric carbon atom, thereby making some of the liquid crystal phases formed by the polymers optically active and chiral. For the chiral polyacrylate smectic A and chiral ferroelectric smectic C phases are observed, however for the chiral polymethacrylate a cholesteric phase is detected above the smectic A phase. It is found that the smectic A to cholesteric phase transition is mediated by the formation of an intermediary twisted smectic A phase. This intermediary phase is a liquid-crystalline analogue of the Abrikosov flux phase found in Type II superconductors.  相似文献   

17.
1 Introduction Liquid crystals (LC) are a state of order between crystals and liquids. They have imperfect long range orders of orientation and position. Thus, they can be fluid like a liquid and they can have anisotropic prop-erties like crystals. For th…  相似文献   

18.
Abstract

Backbone anisotropy and the structure of the mesophases of a series of side-chain liquid crystal polymers have been studied in the bulk by neutron scattering. The backbone conformation is obtained by small-angle neutron scattering on mixtures of hydrogenous polymers with deuteriated backbones. The components of the radius of gyration parallel, R and perpendicular, R ∥ to the magnetic field are determined as a function of temperature for both the nematic phase and the smectic phase. It is shown that the polymer backbone is deformed in both phases. When the polymer exhibits only a nematic phase, it adopts a prolate conformation, where the average backbone direction is more or less parallel to the aligned mesogenic groups. Upon transition from the smectic phase to a nematic phase, the backbone in the nematic phase assumes a slightly oblate shape. This tendency towards oblate shape is due to the smectic fluctuations which are always present in such nematic phases. The exentricity of the oblate backbone conformation in the smectic phase is always larger than in the nematic phase. This is attributed to a periodic distribution of the backbone between the mesophase layers. Then, the backbone anisotropy depends not only on the smectic structure (SA1, SAd), but also on the temperature dependence of the density of aligned mesogenic groups in the layers. On the other hand, it is shown that the isotopic mixtures are no longer ideal when polymers deuteriated in the mesogenic moieties are mixed with the corresponding hydrogenous polymers.  相似文献   

19.
Sandeep Kumar 《Liquid crystals》2005,32(9):1089-1113
Discotic liquid crystals are unique nanostructures with remarkable electronic and optoelectronic properties. Triphenylene derivatives play a major role in the research on discotic liquid crystals. Following recent reviews of the chemistry of triphenylene-based monomeric liquid crystals, this article now reviews the chemistry and physical properties of triphenylene-based discotic dimeric, oligomeric and polymeric liquid crystals.  相似文献   

20.
We reported recently that amphiphilic polymers can be assembled at interfaces created between aqueous phases and thermotropic liquid crystals (LCs) in ways that: (i) couple the organization of the polymer to the order of the LC and (ii) respond to changes in the properties of aqueous phases that can be characterized as changes in the optical appearance of the LC. This investigation sought to characterize the behavior of aqueous–LC interfaces decorated with uniaxially compressed thin films of polymers transferred by Langmuir–Schaefer (LS) transfer. Here, we report physicochemical characterization of interfaces created between aqueous phases and the thermotropic LC 4-cyano-4′-pentylbiphenyl (5CB) decorated with Langmuir films of a novel amphiphilic polymer (polymer 1), synthesized by the addition of hydrophobic and hydrophilic side chains to poly(2-vinyl-4,4′-dimethylazlactone). Initial characterization of this system resulted in the unexpected observation of uniform azimuthal alignment of 5CB after LS transfer of the polymer films to aqueous–5CB interfaces. This paper describes characterization of Langmuir films of polymer 1 hosted at aqueous–5CB interfaces as well as the results of our investigations into the origins of the uniform ordering of the LC observed upon LS transfer. Our results, when combined, support the conclusion that uniform azimuthal alignment of 5CB is the result of long-range ordering of polymer chains in the Langmuir films (in a preferred direction orthogonal to the direction of compression) that is generated during uniaxial compression of the films prior to LS transfer. Although past studies of Langmuir films of polymers at aqueous–air interfaces have demonstrated that in-plane alignment of polymer backbones can be induced by uniaxial compression, these past reports have generally made use of polymers with rigid backbones. One important outcome of this current study is thus the observation of anisotropy and long-range order in Langmuir films of a novel flexible polymer. A second important outcome is the observation that the existence, extent, and dynamics of this order can be identified and characterized optically by transfer of the Langmuir film to a thin film of LC. Additional characterization of Langmuir films of two other flexible polymers [poly(methyl methacrylate) and poly(vinyl stearate)] using this method also resulted in uniform azimuthal alignment of 5CB, suggesting that the generation of long-range order in uniaxially compressed Langmuir films of polymers may also occur more generally over a broader range of polymers with flexible backbones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号