首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李嘉明  唐鹏  王佳见  黄涛  林峰  方哲宇  朱星 《物理学报》2015,64(19):194201-194201
研究光在微纳结构中的分布与传播, 实现在纳米范围内操纵光子, 对于微型光学芯片的设计有着重要意义. 本文利用聚焦离子束刻蚀方法, 在基底为石英玻璃的150 nm厚金膜上刻制了不同参数的阿基米德螺旋微纳狭缝结构, 通过改变入射光波长、手性、及螺旋结构手性和螺距等方式, 在理论和实验上系统地研究了阿基米德螺旋微纳结构中的表面等离激元聚焦性质. 我们发现, 除了入射激光偏振态、螺旋结构手性之外, 结构螺距与表面等离激元波长的比值也可以用来控制结构表面电场分布, 进而在结构中心形成0阶、1阶乃至更高阶符合隐失贝塞尔函数的涡旋电场. 通过相位分析, 我们对涡旋电场的成因进行了解释. 并利用有限时域差分的模拟方法计算了不同螺距时, 结构中形成的电场及相应空间相位分布. 最后利用扫描近场光学显微镜, 观测结构中不同的光场分布, 在结构中心得到了亚波长的聚焦光斑及符合不同阶贝塞尔函数的涡旋形表面等离激元聚焦环.  相似文献   

2.
It has been experimentally demonstrated that a low-loss guided hybrid mode is supported if a metal strip is embedded in a low index polymer layer surrounded by two high index slabs. In this paper, further numerical analyses on the guided hybrid modes are reported to fully elucidate the characteristics of the hybrid plasmonic waveguide. For a one-dimensional slab structure with a metal film of infinite width, simulation results exhibit that low-loss guided hybrid modes are associated with surface plasmon modes and dual dielectric slab modes. The optical properties of the guided modes are improved by increasing the field intensity which is confined into lossless dielectric layers by decreasing the metal film thickness and increasing the refractive index and thickness of the high-index slabs. The finite element method is used to investigate the lateral mode confinement of the optical guided modes by the corresponding metal strip. By reducing the metal film width, the guided modes are confined in the plane transverse to the direction of propagation and the characteristics are significantly improved. The hybrid plasmonic waveguide can be exploited for long-range propagation-based application such as optical interconnection.  相似文献   

3.
We present extinction measurements on rectangular two-dimensional arrays of gold nanoparticles on a dielectric waveguide. The spectra exhibit spectrally narrow bands of suppressed extinction within the particle–plasmon resonance, resulting from destructive interference between the incident light field and the excited waveguide modes. The dependence of the spectral position of these high-transmission bands on different waveguide modes is investigated in detail. Received: 3 July 2001 / Published online: 10 October 2001  相似文献   

4.
An internal reflection mode is introduced for scanning near-field optical microscopy (SNOM) with the tetrahedral tip. A beam of light is coupled into the tip and the light specularly reflected out of the tip is detected as a photosignal for SNOM. An auxiliary STM mode is used to control the distance during the scanning process and to record the topography of the sample simultaneously with the SNOM image. Images were obtained of different metallic samples which show a contrast in the order of 10% of the total reflected photosignal. In images of metallic samples an inverted contrast is consistently obtained compared to images previously obtained of comparable samples in a transmission mode. The contrast shows a pronounced dependence on the polarization of the incident beam with respect to the orientation of the edges of the tip. In the case of gold surfaces, the photosignal as a function of distance between the tip and the surface shows a pronounced peak in the near-field range of 0–20 nm which is tentatively attributed to the excitation of surface plasmons on the gold surface. The pronounced near-field effects and the strong contrast in the near-field images and the resolution well below 50 nm are an indication of a highly efficient coupling of the incident beam to a local excitation of the tip apex which is essential for the function of the tip as a probe for SNOM. Received: 17 May 1999 / Accepted: 18 May 1999 / Published online: 21 October 1999  相似文献   

5.
We propose the coaxial gold nanotubes for their transmission and plasmon resonances theoretically. We find that the transmission spectra are highly adjustable by tuning the thickness of the nanotubes, the separation and the dielectric constant between the inner and outer nanotubes. The resonance peaks close to the left forbidden band gap edge are strongly correlated with the dielectric constant, the inner and outer tube thickness, and the separation between the two tubes. Based on the localized nature of the electric field distributions, we show that local plasmon resonance modes result from hybridized resonances of multifold multipolar plasmon polaritons in the cross section of the coaxial nanotubes.  相似文献   

6.
We have employed random-phase approximation to determine the inverse dielectric function for a harmonically confined two-dimensional electron gas in a magnetic field. We examine the plasmon dispersion relation and show the results for the variation of plasmon frequency with the magnetic field strength and confinement energy.  相似文献   

7.
石墨烯中等离激元具有特殊的光电性质,其和入射光的强烈耦合可以引起光吸收的增强.本文基于时域有限差分法和多体自洽场理论研究了等离激元对处于光学谐振腔中的石墨烯光吸收的影响.由于石墨烯中等离激元与入射光动量和能量不匹配而不能直接相互作用,因此石墨烯上施加了金属光栅结构.研究发现光栅结构能够对入射光进行动量补偿并且能够引起其下石墨烯中的电场强度产生很大程度增强,从而导致在该石墨烯结构中太赫兹等离激元和入射光发生强烈耦合而产生太赫兹等离极化激元,同时引起石墨烯光吸收的增强.希望本文能够加深对石墨烯光电特性的理解以及可以为基于石墨烯的太赫兹光电装置提供一定的理论依据.  相似文献   

8.
Highly confined "spoof" surface plasmons (SSPs) are theoretically predicted to exist in a perforated metal film coated with a thin dielectric layer. Strong modes confinement results from the additional waveguiding by the layer. Spectral characteristics, field distribution, and lifetime of these SSPs are tunable by the holes' size and shape. SSPs exist both above and below the light line, offering two classes of applications: "perfect" far-field absorption and efficient emission into guided modes. It is experimentally shown that these plasmonlike modes can turn thin, weakly absorbing semiconductor films into perfect absorbers.  相似文献   

9.
We describe a surface plasmon polariton- (SPP-) based device for measuring the intensity distribution of strongly focused light beams. A gold thin film configured as a sharp step is positioned in the focal region of a light beam, converting light into SPPs. The SPPs emit directional leakage radiation into the glass substrate beneath the thin film. The intensity of the leakage radiation is proportional to the intensity of the incident local light at the position of the step, allowing us to reconstruct the optical field profile by scanning the thin film's edge through the focal region.  相似文献   

10.
Nanoscale ridge apertures provide a highly confined radiation spot with a high transmission efficiency when used in the near field approach. The radiation confinement and enhancement is due to the electric–magnetic field concentrated in the gap between the ridges. This paper reports the experimental demonstration of radiation enhancement using such antenna apertures and lithography of nanometer size structures. The process utilizes a NSOM (near field scanning optical microscopy) probe with a ridge aperture at the tip, and it combines the nonlinear two photon effect from femtosecond laser irradiation to achieve sub-diffraction limit lithography resolution.  相似文献   

11.
Near field optical properties and surface plasmon resonances on a pair of silver-shell nanocylinder and nanochain waveguides with different core–shell patterns which interact with incident plane wave along chain axis are numerically investigated by using the finite element method. Simulation results show that the peak wavelengths and resonant field enhancements are highly tunable by using the nanoshell particles instead of solid ones, revealing a critical relationship among the wavelengths and illuminated direction of incident light, interparticle spacing, radii, and medium of dielectric holes and the patterns of chain waveguides. Besides, nanochain waveguides with different patterns of core–shell that are operated on resonant multipolar modes can provide higher propagation intensities and the transmission ability can be increased by decreasing the size of nanocylinders along the chain axis.  相似文献   

12.
We report on near-field scanning optical microscopy measurements on randomly textured ZnO thin films. These films are commonly used as transparent conducting oxide in thin-film solar cells. Textured interfaces are used to increase the scattering of light, which leads to a better light trapping in the solar cell. Here, both the topography and the local transmission are measured with a tapered fiber tip with very high spatial resolution. By varying the distance of the tip and the wavelength of the incident light, the optical profile is visualized and reveals a strong confinement of light on a subwavelength scale which corresponds to ridges in the surface structure. The confinement of light results from guided optical modes in the ZnO which are accompanied by a modulated evanescent field in air. No corresponding structure to this modulation is found in the topography. These results give new insight for further improvement of light trapping in solar cells.  相似文献   

13.
We demonstrate strong confinement of the optical field by depositing a micron sized metallic disk on a planar distributed Bragg reflector. Confined Tamm plasmon modes are evidenced both experimentally and theoretically, with a lateral confinement limited to the disk area and strong coupling to TE polarized fields. Single quantum dots controllably coupled to these modes are shown to experience acceleration of their spontaneous emission when spectrally resonant with the mode. For quantum dots spectrally detuned from the confined Tamm plasmon mode, an inhibition of spontaneous emission by a factor 40±4 is observed, a record value in the optical domain.  相似文献   

14.
双平行圆柱形MDM纳米棒等离子体波导的传输特性分析   总被引:1,自引:0,他引:1  
李志全  孟靓  朱君  童凯  王志斌 《发光学报》2013,34(8):1073-1078
设计了一种由双平行圆柱形纳米棒构成的金属-介质-金属(MDM)型等离子体波导,采用时域有限差分方法(FDTD)分析了波导结构的传输特性。当光波垂直主轴入射时,电磁场被很好地局限在两纳米棒所形成的中间区域以及介质层中,从而在该波导中能够有效地耦合电磁场能量。在工作波长为1 550 nm的情况下,随着内层金属芯半径的增大,有效折射率减小,传播距离增大;而中间介质层厚度增大时,有效折射率增大,传播距离减小。当外层金属壳厚为20 nm时,电场可以很好地被限制在纳米棒的介质层内。上述结果表明:通过调整波导结构的几何参数可以显著提高金属纳米棒的场限制,降低波导本身的损耗, 使波导的有效折射率和传播长度达到最优化。这种等离子体波导能够实现亚波长的光限制,可以应用于光子器件集成和传感器领域。  相似文献   

15.
We perform rigorous simulations of hybrid long-range modes guided by a central metal core and a two-dimensional dielectric slab. We show that these modes are subject to fewer limitations than conventional long-range plasmon modes in terms of field confinement and guiding performance. These hybrid modes may offer substantial improvements for integrated plasmonic components, as illustrated here by the consideration of 90 degrees bends.  相似文献   

16.
Properties of the angular gap in a one-dimensional photonic band gap structure containing single negative materials are investigated. This gap forms at oblique incidence due to the total internal reflection into air when the Snell's law breaks down. Its lower edge occurs at the frequency where the refractive index of one or both layers of the structure approaches zero. This gap is found to be highly sensitive to the incident angle and the polarization of the incident light, but is not affected by the thickness ratio of the layers. It is also shown that the electric field gets extremely enhanced at the lower edge of this gap for transverse magnetic polarization. This highly enhanced electric field can be utilized for certain applications.  相似文献   

17.
We investigate the interaction between a single mode light field and an elongated cigar shaped Bose-Einstein condensate (BEC), subject to a temporal modulation of the trap frequency in the tight confinement direction. Under appropriate conditions, the longitudinal sound like waves (Faraday waves) in the direction of weak confinement acts as a dynamic diffraction grating for the incident light field analogous to the acousto-optic effect in classical optics. The change in the refractive index due to the periodic modulation of the BEC density is responsible for the acousto-optic effect. The dynamics is characterised by Bragg scattering of light from the matter wave Faraday grating and simultaneous Bragg scattering of the condensate atoms from the optical grating formed due to the interference between the incident light and the diffracted light fields. Varying the intensity of the incident laser beam we observe the transition from the acousto-optic effect regime to the atomic Bragg scattering regime, where Rabi oscillations between two momentum levels of the atoms are observed. We show that the acousto-optic effect is reduced as the atomic interaction is increased.  相似文献   

18.
In this work, we demonstrate surface plasmon resonance properties and field confinement under a strong interaction between a waveguide and graphene nanoribbons (GNRs), obtained by coupling with a nanocavity. The optical transmission of a waveguide–cavity–graphene structure is investigated by finite-difference time-domain simulations and coupled-mode theory. The resonant frequency and intensity of the GNR resonant modes can be precisely controlled by tuning the Fermi energy and carrier mobility of the graphene, respectively. Moreover, the refractive index of the cavity core, the susceptibility χ(3) and the intensity of incident light have little effect on the GNR resonant modes, but have good tunability to the cavity resonant mode. The cavity length also has good tunability to the resonant mode of cavity. A strong interaction between the GNR resonant modes and the cavity resonant mode appears at a cavity length of L1 = 350 nm. We also demonstrate the slow-light effect of this waveguide–cavity–graphene structure and an optical bistability effect in the plasmonic cavity mode by changing the intensity of the incident light. This waveguide–cavity–graphene structure can potentially be utilised to enhance optical confinement in graphene nano-integrated circuits for optical processing applications.  相似文献   

19.
The deformation and plasmon effects of collective localized surface plasmons between incident light and bubble-pit AgOx-type super-RENS structure have been studied using finite-difference time-domain (FDTD) method. We find that the polarization, wavelength of incident light, and particle sizes of Ag nanoparticles are sensitive to the plasma resonance. The Ag nanoparticles inside the bubble-pit AgOx-type super-RENS structure give the additional outer boundaries to the motion of the Ag nanoparticles, and excite more evanescent field which located in the far edge of the bubble from the optical axis of the incident beam. The optical properties between active layer and incident light with polarization direction, different wavelengths, and varied particle sizes of Ag nanoparticles exhibits nonlinear optical behavior in the near field. The far-field signals of different wavelength of incident light confirm the relation between highly localized near-field distributions and enhanced resolution of far-field signals. The subwavelength recording marks smaller than the diffraction limit were distinguishable since the Ag nanoparticles with high localized fields transferred evanescent waves to detectable signals in the far field. PACS 42.79.Vb; 71.15.Rn; 72.15.Rn; 73.22.-f; 73.22.Lp; 78.67.Bf; 73.20.Mf  相似文献   

20.
In this paper, we show that a graphene quantum disk (GQD) can be generated on monolayer graphene via structural modification using the electron beam. The electronic structure and local optical responses of the GQD, supported on monolayer graphene, were probed with electron energy-loss spectrum imaging on an aberration-corrected scanning transmission electron microscope. We observe that for small GQD, ~1.3 nm in diameter, the electronic structure and optical response are governed by the dominating edge states, and are distinctly different from either monolayer graphene or double-layer graphene. Highly localized plasmon modes are generated at the GQD due to the confinement from the edge of the GQD in all directions. The highly localized optical response from GQDs could find use in designing nanoscale optoelectronic and plasmonic devices based on monolayer graphene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号