首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
We present a new thermodynamic coupling strategy for complex reacting flow in a low Mach number framework. In such flows, the advection, diffusion and reaction processes span a broad range of time scales. In order to reduce splitting errors inherent in Strang splitting approaches, we couple the processes with a multi-implicit spectral deferred correction strategy. Our iterative scheme uses a series of relatively simple correction equations to reduce the error in the solution. The new method retains the efficiencies of Strang splitting compared to a traditional method-of-lines approach in that each process is discretised sequentially using a numerical method well suited for its particular time scale. We demonstrate that the overall scheme is second-order accurate and provides increased accuracy with less computational work compared to Strang splitting for terrestrial and astrophysical flames. The overall framework also sets the stage for higher-order coupling strategies.  相似文献   

2.
We present a fourth-order finite-volume algorithm in space and time for low Mach number reacting flow with detailed kinetics and transport. Our temporal integration scheme is based on a Multi-Implicit Spectral Deferred Correction (MISDC) strategy that iteratively couples advection, diffusion, and reactions evolving subject to a constraint. Our new approach overcomes a stability limitation of our previous second-order method encountered when trying to incorporate higher-order polynomial representations of the solution in time to increase accuracy. We have developed a new iterative scheme that naturally fits within our MISDC framework and allows us to conserve mass and energy while simultaneously satisfying the equation of state. We analyse the conditions for which the iterative schemes are guaranteed to converge to the fixed point solution. We present numerical examples illustrating the performance of the new method on premixed hydrogen, methane, and dimethyl ether flames.  相似文献   

3.
We propose an algorithm for low Mach number reacting flows subjected to electric field that includes the chemical production and transport of charged species. This work is an extension of a multi-implicit spectral deferred correction (MISDC) algorithm designed to advance the conservation equations in time at scales associated with advective transport. The fast and nontrivial interactions of electrons with the electric field are treated implicitly using a Jacobian-Free Newton Krylov approach for which a preconditioning strategy is developed. Within the MISDC framework, this enables a close and stable coupling of diffusion, reactions and dielectric relaxation terms with advective transport and is shown to exhibit second-order convergence in space and time. The algorithm is then applied to a series of steady and unsteady problems to demonstrate its capability and stability. Although developed in a one-dimensional case, the algorithmic ingredients are carefully designed to be amenable to multi-dimensional applications.  相似文献   

4.
We present a parallel multi-implicit time integration scheme for the advection-diffusion-reaction systems arising from the equations governing low-Mach number combustion with complex chemistry. Our strategy employs parallelisation across the method to accelerate the serial Multi-Implicit Spectral Deferred Correction (MISDC) scheme used to couple the advection, diffusion, and reaction processes. In our approach, the diffusion solves and the reaction solves are performed concurrently by different processors. Our analysis shows that the proposed parallel scheme is stable for stiff problems and that the sweeps converge to the fixed-point solution at a faster rate than with serial MISDC. We present numerical examples to demonstrate that the new algorithm is high-order accurate in time, and achieves a parallel speedup compared to serial MISDC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号