首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have developed a general theory of non-adiabatic premixed flames that is valid for flames of arbitrary shape that fully accounts for the hydrodynamic and diffusive-thermal processes, and incorporates the effects of volumetric heat losses. The model is used to describe aspects of experimentally observed phenomena of self-extinguishing (SEFs) and self-wrinkling flames (SWFs), in which radiative heat losses play an important role. SEFs are spherical flames that propagate considerable distances in sub-limit conditions before suddenly extinguishing. Our results capture many aspects of this phenomenon including an explicit determination of flame size and propagation speed at quenching. SWFs are hydrodynamically unstable flames in which cells spontaneously appear on the flame surface once the flame reaches a critical size. Our results yield expressions of the critical flame size at the onset of wrinkling and expected cell size beyond the stability threshold. The various possible burning regimes are mapped out in parameter space.  相似文献   

2.
The effects of equivalence ratio variations on flame structure and propagation have been studied computationally. Equivalence ratio stratification is a key technology for advanced low emission combustors. Laminar counterflow simulations of lean methane–air combustion have been presented which show the effect of strain variations on flames stabilized in an equivalence ratio gradient, and the response of flames propagating into a mixture with a time-varying equivalence ratio. ‘Back supported’ lean flames, whose products are closer to stoichiometry than their reactants, display increased propagation velocities and reduced thickness compared with flames where the reactants are richer than the products. The radical concentrations in the vicinity of the flame are modified by the effect of an equivalence ratio gradient on the temperature profile and thermal dissociation. Analysis of steady flames stabilized in an equivalence ratio gradient demonstrates that the radical flux through the flame, and the modified radical concentrations in the reaction zone, contribute to the modified propagation speed and thickness of stratified flames. The modified concentrations of radical species in stratified flames mean that, in general, the reaction rate is not accurately parametrized by progress variable and equivalence ratio alone. A definition of stratified flame propagation based upon the displacement speed of a mixture fraction dependent progress variable was seen to be suitable for stratified combustion. The response times of the reaction, diffusion, and cross-dissipation components which contribute to this displacement speed have been used to explain flame response to stratification and unsteady fluid dynamic strain.  相似文献   

3.
Most studies of triple flames in counterflowing streams of fuel and oxidizer have been focused on the symmetric problem in which the stoichiometric mixture fraction is 1/2. There then exist lean and rich premixed flames of roughly equal strengths, with a diffusion flame trailing behind from the stoichiometric point at which they meet. In the majority of realistic situations, however, the stoichiometric mixture fraction departs appreciably from unity, typically being quite small. With the objective of clarifying the influences of stoichiometry, attention is focused on one of the simplest possible models, addressed here mainly by numerical integration. When the stoichiometric mixture fraction departs appreciably from 1/2, one of the premixed wings is found to be dominant to such an extent that the diffusion flame and the other premixed flame are very weak by comparison. These curved, partially premixed flames are expected to be relevant in realistic configurations. In addition, a simple kinematic balance is shown to predict the shape of the front and the propagation velocity reasonably well in the limit of low stretch and low curvature.  相似文献   

4.
We examine the dynamics of premixed flames in long, narrow, adiabatic channels focusing, in particular, on the effects of gas compressibility on the propagation. Recognising the importance of the boundary conditions, we examine and compare three cases: flame propagation in channels open at both ends, where the pressure must adjust to the ambient pressure at both ends and the expanding gas is allowed to leave the channel freely, and flame propagation in channels that remain closed at one of the two ends, where the burned/unburned gas remains trapped between the flame and one of the two walls. Earlier studies have shown that a flame accelerates when travelling down a narrow channel as a result of the combined effects of wall friction and thermal expansion. In the present work we show that compressibility effects enhance the transition to fast accelerating flames in channels open at both ends and in channels closed at the ignition end. In both situations, the accelerating flames could reach values that, depending on the effective Mach number, are as large as fifty times the laminar flame speed. In contrast, when the channel is closed at the far end, the acceleration is limited and the propagation speed is damped as the flame approaches the far boundary. Moreover, we show that, in channels closed at their ignition end, the flame in sufficiently long channels evolves into a steadily propagating compression-driven flame. The propagation speed of these flames depends exponentially on the constant-volume equilibrium temperature, which is higher than the (constant pressure) adiabatic flame temperature, and is therefore larger than for ordinary isobaric flames. Fast propagating compression waves cannot emerge in channels that remain open at their ignition end because of the reduced pressure forced by the open boundary.  相似文献   

5.
Recent numerical and experimental studies have unveiled a potentially marked difference between the laminar as well as turbulent propagation of premixed flames exhibiting Darrieus–Landau (DL) (or hydrodynamic) instabilities from flames for which instabilities are inhibited. In this study we utilize two-dimensional numerical simulations of slot burner flames as well as experimental Propane–Air Bunsen flames to analyse differences in turbulent propagation, strain rate and induced flow patterns of hydrodynamically stable and unstable flames. We also investigate the effects of hydrodynamic instability on quantities which are directly related to reaction rate closure models, such as flame surface density and stretch factor. A clear enhancement of turbulent flame speed can be observed for unstable flames, generally mitigated at higher turbulence intensity, which is attributed to a flame area increase induced by the characteristic cusp-like DL-induced corrugation, absent in stable flames, which occurs concurrently and in synergy with turbulent wrinkling. Unstable flames also exhibit, both numerically and experimentally, a different correlation between strain rate and flame curvature and are observed to give rise to a channeling of the induced flow in the fresh mixture. Conditionally averaged flame surface density is also observed to attain smaller values in unstable flames, as a result of the thicker turbulent flame brush, indicating that closure models should incorporate instability-related parameters in addition to turbulence-related parameters.  相似文献   

6.
The laminar flame speed is an important property of a reacting mixture and it is used extensively for the characterization of the combustion process in practical devices. However, under engine-relevant conditions, considerable reactivity may be present in the unburned mixture, introducing thus challenges due to couplings of auto-ignition and flame propagation phenomena. In this study, the propagation of transient, one-dimensional laminar flames into a reacting unburned mixture was investigated numerically in order to identify the parameters influencing the flame burning rate in the conduction-reaction controlled regime at constant pressure. It was found that the fuel chemical classification significantly influences the burning rate. More specifically, for hydrogen flames, the “evolution” of the burning rate does not depend on the initial unburned mixture temperature. On the other hand, for n-heptane flames that exhibit low temperature chemistry, the burning rate depends on the instantaneous temperature and composition of the unburned mixture in a coupled way. A new approach was developed allowing for the decoupling the flame chemistry from the ignition dynamics as well as for the decoupling of parameters influencing the burning rate, so that meaningful sensitivity analysis could be performed. It was determined that the burning rate is not directly affected by fuel specific reactions even in the presence of low temperature chemistry whose effect is indirect through the modification of the reactants composition entering the flame. The controlling parameters include but not limited to mixture conductivity, enthalpy, and the species composition evolution in the unburned mixture.  相似文献   

7.
The initial propagation processes of expanding spherical flames of CH4/N2/O2/He mixtures at different ignition energies were investigated experimentally and numerically to reduce the effect of ignition energy on the accurate determination of laminar flame speeds. The experiments were conducted in a constant-volume combustion bomb at initial pressures of 0.07???0.7?MPa, initial temperatures of 298???398?K, and equivalence ratios of 0.9???1.3 with various Lewis numbers. The A-SURF program was employed to simulate the corresponding flame propagation processes. The results show that elevating the ignition energy increases the initial flame propagation speed and expands the range of flame trajectory which is affected by ignition energy, but the increase rates of the speed and range decrease with the ignition energy. Based on the trend of the minimum flame propagation speed during the initial period with the ignition energy, the minimum reliable ignition energy (MRIE) is derived by considering the initial flame propagation speed and energy conservation. It is observed that MRIE first decreases and then increases with the increasing equivalence ratio and monotonously decreases with increasing initial pressure and temperature. As the Lewis number rises, MRIE increases. The results also suggest that during the data processing of the spherical flame experiment, the accuracy of determination of laminar flame speeds can be enhanced when taking the flame radius influenced by MRIE as the lower limit of the flame radius range. Then the flame radius influenced by MRIE was defined as RFR. It can also be found that there exist nonlinear relationships between RFR and the equivalence ratio and Lewis number, and the RFR decreases with increasing initial pressure and temperature.  相似文献   

8.

The stabilization of turbulent premixed flames in strongly swirled flows undergoing vortex breakdown is studied in the case of the ALSTOM En-Vironmental (EV) double cone burner using a simple one-dimensional boundary layer type model and computational fluid dynamics, mainly at the level of large-eddy simulation. The analysis shows that, due to flame curvature effects, the flame speed on the combustor axis is 2 D t/R F lower than the turbulent burning rate, where D t is a characteristic turbulent diffusion coefficient and R F the flame radius of curvature. Flame propagation with negative speed observed in the experiments, i.e. the flame completely embedded in the central recirculation zone on the symmetry axis, is explained with the one-dimensional model as caused by the factor 2 D t/R F being larger than the characteristic turbulent burning rate. A peculiar sudden displacement of the flame anchoring location deep into the burner, which takes place experimentally at a critical value of the equivalence ratio, cannot however be explained with the present one-dimensional approach due to the modelling assumptions. The mathematical analysis is supported in this case with large-eddy simulation which can accurately reproduce the flame behaviour across the full operating range. It is finally shown that steady RANS methods cannot cope with the problem due to their inability to correctly predict the velocity flowfield in this burner.  相似文献   

9.
The structure and propagation properties of diffusion neutral triple flames subject to buoyancy effects are studied numerically using a high-accuracy scheme. A wide range of gravity conditions, heat release, and mixing widths for a scalar mixing layer are computed for downward-propagating (in the same direction as the gravity vector) and upward-propagating (in the opposite direction to the gravity vector) triple flames. These results are used to identify non-dimensional quantities, which parametrize the triple flame responses. Results show that buoyancy acts primarily to modify the overall span of the premixed branches in response to gas acceleration across the triple flame. The impact of buoyancy on the structure of triple flame is less pronounced than its impact on the topology of the branches. The trailing diffusion branch is affected by buoyancy primarily as a result of the changes in the overall flame size, which consequently modifies the rates of diffusion of excess fuel and oxidizer from the premixed branches to the diffusion branch. A simple analytical model for the triple flame speed, which accounts for both buoyancy and heat release is developed. Comparisons of the proposed model with the numerical results for a wide range of gravity, heat release and mixing width conditions, yield very good agreement. The analysis shows that under neutral diffusion, downward propagation reduces the triple flame speed, while upward propagation enhances it. For the former condition, a critical Froude number may be evaluated, which corresponds to a vanishing triple flame speed.  相似文献   

10.
Resistance to extinction by stretch is a key property of any flame, and recent work has shown that this property controls the overall structure of several important types of turbulent flames. Multiple definitions of the critical strain rate at extinction (ESR) have been presented in the literature. However, even if the same definition is used, different experiments report different extinction strain rates for flames burning the same fuel-air mixture at very similar temperatures using similarly constructed opposed-flow instruments. Here we show that at extinction, all these flames are essentially identical, so one would expect that each would be assigned the same value of a parameter representing its intrinsic resistance-to-stretch-induced-extinction, regardless of the specifics of the experimental apparatus. A similar situation arises in laminar flame speed measurements since different apparatuses could result in different strain rate distributions. In that instance, the community has agreed to report the unstretched laminar flame speed, and methods have been developed to translate the experimental (stretched) flame speed into a universal unstretched laminar flame speed. We propose an analogous method for translating experimental measurements for stretch-induced extinction into an unambiguous and apparatus-independent quantity (ESR) by extrapolating to infinite opposing burner separation distance. The uniqueness of the flame at extinction is shown numerically and supported experimentally for twin premixed, single premixed, and diffusion flames at Lewis numbers greater than and less than one. A method for deriving ESR from finite-boundary experimental studies is proposed and demonstrated for methane and propane experimental diffusion and premixed single flame data. The two values agree within the range of ESR differences typically observed between experimental measurements and simulation results for the traditional ESR definition.  相似文献   

11.
We investigate the role played by hydrodynamic instability in the wrinkled flamelet regime of turbulent combustion, where the intensity of turbulence is small compared to the laminar flame speed and the scale large compared to the flame thickness. To this end the Michelson–Sivashinsky (MS) equation for flame front propagation in one and two spatial dimensions is studied in the presence of uncorrelated and correlated noise representing a turbulent flow field. The combined effect of turbulence intensity, integral scale, and an instability parameter related to the Markstein length are examined and turbulent propagation speed monitored for both stable planar flames and corrugated flames for which the planar conformation is unstable. For planar flames a particularly simple scaling law emerges, involving quadratic dependence on intensity and a linear dependence on the degree of instability. For corrugated flames we find the dependence on intensity to be substantially weaker than quadratic, revealing that corrugated flames are more resilient to turbulence than planar flames. The existence of a threshold turbulence intensity is also observed, below which the corrugated flame in the presence of turbulence behaves like a laminar flame. We also analyze the conformation of the flame surface in the presence of turbulence, revealing primary, large-scale wrinkles of a size comparable to the main corrugation. When the integral scale is much smaller than the characteristic corrugation length we observe, in addition to primary wrinkles, secondary small-scale wrinkles contaminating the surface. The flame then acquires a multi-scale, self-similar conformation, with a fractal dimension, for one-dimensional flames, plateauing at 1.23 for large intensities. The existence of an intermediate integral scale is also found at which the turbulent speed is maximized. When two-dimensional flames are subject to turbulence, the primary wrinkling patterns give rise to polyhedral-cellular structures which bear a very close resemblance to those observed in experiments on hydrodynamically unstable expanding spherical flames.  相似文献   

12.
The near-limit diffusion flame regimes and extinction limits of dimethyl ether at elevated pressures and temperatures are examined numerically in the counterflow geometry with and without radiation at different oxygen concentrations. It is found that there are three different flame regimes—hot flame, warm flame, and cool flame—which exist, respectively, at high, intermediate, and low temperatures. Furthermore, they are governed by three distinct chain-branching reaction pathways. The results demonstrate that the warm flame has a double reaction zone structure and plays a critical role in the transition between cool and hot flames. It is also shown that the cool flame can be formed in several different ways: by either radiative extinction or stretch extinction of a hot flame or by stretch extinction of a warm flame. A warm flame can also be formed by radiative extinction of a hot flame or ignition of a cool flame. A general €-shaped flammability diagram showing the burning limits of all three flame regimes at different oxygen mole fractions is obtained. The results show that thermal radiation, reactant concentration, temperature, and pressure all have significant impacts on the flammable regions of the three flame regimes. Increases in oxidizer temperature, oxygen concentration, and pressure shift the cool flame regime to higher stretch rates and cause the warm flame to have two extinction limits. At elevated temperatures, it is found that there is a direct transition between the hot flame and warm flame at low stretch rates. The results also show that, unlike the hot flame, the cool flame structure cannot be scaled by using pressure-weighted stretch rates due to the its significant reactant leakage and strong dependence of reactivity on pressure. The present results advance the understanding of near-limit flame dynamics and provide guidance for experimental observation of different flame regimes.  相似文献   

13.
We have studied flame propagation in a strained mixing layer formed between a fuel stream and an oxidizer stream, which can have different initial temperatures. Allowing the Lewis numbers to deviate from unity, the problem is first formulated within the framework of a thermo-diffusive model and a single irreversible reaction. A compact formulation is then derived in the limit of large activation energy, and solved analytically for high values of the Damköhler number. Simple expressions describing the flame shape and its propagation velocity are obtained. In particular, it is found that the Lewis numbers affect the propagation of the triple flame in a way similar to that obtained in the studies of stretched premixed flames. For example, the flame curvature determined by the transverse enthalpy gradients in the frozen mixing layer leads to flame-front velocities which grow with decreasing values of the Lewis numbers.

The analytical results are complemented by a numerical study which focuses on preferential-diffusion effects on triple flames. The results cover, for different values of the fuel Lewis number, a wide range of values of the Damköhler number leading to propagation speeds which vary from positive values down to large negative values  相似文献   

14.
The influence of Soret diffusion on lean premixed flames propagating in hydrogen/air mixtures is numerically investigated with a detailed chemical and transport models at normal and elevated pressure and temperature. The Soret diffusion influence on the one-dimensional (1D) flame mass burning rate and two-dimensional (2D) flame propagating characteristics is analysed, revealing a strong dependency on flame stretch rate, pressure and temperature. For 1D flames, at normal pressure and temperature, with an increase of Karlovitz number from 0 to 0.4, the mass burning rate is first reduced and then enhanced by Soret diffusion of H2 while it is reduced by Soret diffusion of H. The influence of Soret diffusion of H2 is enhanced by pressure and reduced by temperature. On the contrary, the influence of Soret diffusion of H is reduced by pressure and enhanced by temperature. For 2D flames, at normal pressure and temperature, during the early phase of flame evolution, flames with Soret diffusion display more curved flame cells. Pressure enhances this effect, while temperature reduces it. The influence of Soret diffusion of H2 on the global consumption speed is enhanced at elevated pressure. The influence of Soret diffusion of H on the global consumption speed is enhanced at elevated temperature. The flame evolution is more affected by Soret diffusion in the early phase of propagation than in the long run due to the local enrichment of H2 caused by flame curvature effects. The present study provides new insights into the Soret diffusion effect on the characteristics of lean hydrogen/air flames at conditions that are relevant to practical applications, e.g. gas engines and turbines.  相似文献   

15.
This paper presents an assessment of Large Eddy Simulations (LES) in calculating the structure of turbulent premixed flames propagating past solid obstacles. One objective of the present study is to evaluate the LES simulations and identify the drawbacks in accounting the chemical reaction rate. Another objective is to analyse the flame structure and to calculate flame speed, generated overpressure at different time intervals following ignition of a stoichiometric propane/air mixture. The combustion chamber has built-in repeated solid obstructions to enhance the turbulence level and hence increase the flame propagating speed. Various numerical tests have also been carried out to determine the regimes of combustion at different stages of the flame propagation. These have been identified from the calculated results for the flow and flame characteristic parameters. It is found that the flame lies within the ‘thin reaction zone’ regime which supports the use of the laminar flamelet approach for modelling turbulent premixed flames. A submodel to calculate the model coefficient in the algebraic flame surface density model is implemented and examined. It is found that the LES predictions are slightly improved owing to the calculation of model coefficient by using submodel. Results are presented and discussed in this paper are for the flame structure, position, speed, generated pressure and the regimes of combustion during all stages of flame propagation from ignition to venting. The calculated results are validated against available experimental data.  相似文献   

16.
Flame shape is an important observed characteristic of flames that can be used to scale flame properties such as heat release rates and radiation. Flame shape is affected by fuel type, oxygen levels in the oxidiser, inverse burning and gravity. The objective of this study is to understand the effect of high oxygen concentrations, inverse burning, and gravity on the predictions of flame shapes. Flame shapes are obtained from recent analytical models and compared with experimental data for a number of inverse and normal ethane flame configurations with varying oxygen concentrations in the oxidiser and under earth gravity and microgravity conditions. The Roper flame shape model was extended to predict the complete flame shapes of laminar gas jet normal and inverse diffusion flames on round burners. The Spalding model was extended to inverse diffusion flames. The results show that the extended Roper model results in reasonable predictions for all microgravity and earth gravity flames except for enhanced oxygen normal diffusion flames under earth gravity conditions. The results also show trends towards cooler flames in microgravity that are in line with past experimental observations. Some key characteristics of the predicted flame shapes and parameters needed to describe the flame shape using the extended Roper model are discussed.  相似文献   

17.
We examine a new aspect of triple flames, namely the effect of the reversibility of the chemical reaction on flame propagation. The study is carried out in the configuration of the two-dimensional strained mixing layer formed between two opposing streams of fuel and oxidiser. The chemical reaction is modelled as a single reversible reaction following an Arrhenius law in the forward and backward directions. The problem is formulated within the constant-density (thermo-diffusive) approximation, the main non-dimensional parameters relevant to this study being a reversibility parameter R (equal to zero in the irreversible case), a non-dimensional measure of the strain rate ? and a stoichiometric parameter S. We provide analytical (asymptotic) expressions for the local burning speed of the triple flame in terms of ?, S, and R. In particular we describe how the propagation speed of the front is decreased by an increase in R and how the location of its leading edge is affected by reversibility. For example, it is found that the leading edge shifts towards the fuel stream for S > 1 and towards the oxidiser if S < 1, as R is increased. A detailed numerical study is conducted covering all propagation regimes ranging from weakly stretched positively propagating (ignition) fronts to thick negatively propagating (extinction) fronts. In the weakly stretched cases we show that the numerics are in good agreement with the asymptotic findings. Furthermore, the results allow the determination of the domains of the distinct propagation regimes, mainly in the terms of R and ?. In line with our physical intuition, it is found that reversibility reduces the domain of ignition fronts and promotes extinction. The results provide a systematic investigation which can be considered as a first step when considering a more realistic chemistry, or poorly explored aspects (such as the existence of a temperature gradient in the unburnt mixture), when analyzing triple flames.  相似文献   

18.
We numerically investigate the interaction of sinusoidal pressure waves and slightly corrugated premixed flames. Work up to now has demonstrated the well-known Rayleigh–Taylor instability by imposing a single pressure ramp function onto a corrugated premixed flame. This paper considers sinusoidal oscillations of pressure. Such inputs are important since observations of large-scale experiments suggest that the presence of acoustic waves might be expected to have a significant influence on the propagation of the flame. The numerical experiments reported in this paper show that oscillatory pressure waves of the order of 800 Hz can have a magnifying effect on the wrinkling of the flame, due to the effect of Rayleigh–Taylor instabilities, hence increasing the overall mass burning rate, and that a sinusoidal pressure wave interacting with a premixed flame causes the flame to increase its wrinkling with every cycle in pressure. The result of great interest is that this growing process reaches a maximum after a few cycles, creating a dynamic equilibrium in which the final time-averaged mass burning flux is larger compared to that of the initial flame. It is also shown that the final mass burning flux increases with amplitude of the pressure wave, and increases with increasing frequency over the range explored.  相似文献   

19.
Laminar burning velocities are of great importance in many combustion models as well as for validation and improvement of chemical kinetic schemes. Determining laminar burning velocities with high accuracy is quite challenging and different approaches exist. Hence, a comparison of existing methods measuring and evaluating laminar burning velocities is of interest. Here, two optical diagnostics, high speed tomography and Schlieren cinematography, are simultaneously set up to investigate methods for evaluating laminar flame speed in a spherical flame configuration. The hypothesis to obtain the same flame propagation radii over time with the two different techniques is addressed. Another important aspect is the estimation of flame properties, such as the unstretched flame propagation speed and Markstein length in the burnt gas phase and if these are estimated satisfactorily by common experimental approaches. Thorough evaluation of the data with several extrapolation techniques is undertaken. A systematic extrapolation approach is presented to give more confidence into results generated experimentally. The significance of the linear extrapolation routine is highlighted in this context. Measurements of spherically expanding flames are carried out in two high-pressure, high-temperature, constant-volume vessels at RWTH in Aachen, Germany and at ICARE in Orleans, France. For the discussion of the systematic extrapolation approach, flame speed measurements of methane / air mixtures with mixture Lewis numbers moderately away from unity are used. Conditions were varied from lean to rich mixtures, at temperatures of 298–373 K, and pressures of 1 atm and 5 bar.  相似文献   

20.
In this paper, we present a study on the effect of Lewis number, Le, on the stabilization and blow-off of laminar lean limit premixed flames stabilized on a cylindrical bluff body. Numerical simulations and experiments are conducted for propane, methane and two blends of hydrogen with methane as fuel gases, containing 20% and 40% of hydrogen by volume, respectively. It is found that the Le?>?1 flame blows-off via convection from the base of the flame (without formation of a neck) when the conditions for flame anchoring are not fulfilled. Le?≤?1 flames exhibit a necking phenomenon just before lean blow-off. This necking of the flame front is a result of the local reduction in mass burning rates causing flame merging and quenching of the thin flame tube formed. The structure of these flames at the necking location is found to be similar to tubular flames. It is found that extinction stretch rates for tubular flames closely match values at the neck location of bluff-body flames of corresponding mixtures, suggesting that excessive flame stretch is directly responsible for blow-off of the studied Le?≤?1 flames. After quenching of the neck, the upstream part forms a steady and stable residual flame in the wake of the bluff body while the downstream part is convected away.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号