首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
周亮  邓瑞平  郝召民  宋明星  张洪杰 《化学学报》2012,70(18):1904-1908
报道一种具有稳定发射光谱的新型白色有机电致发光器件. 选择DCJTB 作为红光染料将其掺入空穴传输材料NPB 中作为空穴传输层和第一发光层, 提供蓝光和红光; 选择AlQ 作为电子注入敏化剂, 将其掺入NPB 中作为第二发光层, 提供蓝光和绿光. DCJTB和AlQ 的掺杂浓度分别被优化为0.4%和1.4%, 第二发光层的厚度被优化为3 nm. 最终,得到了纯白色发射的有机电致发光器件; 该器件启亮电压仅3.1 V, 最大亮度高达32749 cd/m2, 器件的最大电流效率为8.67 cd/A, 器件的最大功率效率为8.78 lm/W. 而且, 空穴型主体材料的选择导致该器件的色稳定性非常理想. 随着电流密度的提高, 该器件的色坐标始终稳定在(0.343, 0.342)到(0.328, 0.336)的范围内.  相似文献   

2.
不同电子传输层的蓝光有机电致发光器件的性能研究   总被引:6,自引:0,他引:6  
自从Tang等^[1]首次报道多层有机电致发光器件(OLED)以来,其在亮度和效率上有了质的飞跃,表明器件的结构对提高发光亮度和发光效率起着至关重要的作用,单层器件虽然具有制作简单的优点,但却存在明显缺点:(1)复合发光区靠近金属电极,该处缺陷很多,非辐射复合几率大,导致器件效率降低;(2)由于两种载流子注入不平衡,载流子的复合几率较低,因而影响器件的发光效率,要使发光层中具有高的载流子辐射复合效率,两种载流子的注入及传输能力应相当,否则传输快的一方就会直接穿过发光层到达对电极被猝灭,平衡电子和空穴的注入与传输可通过在电极和发光层之间加入载流子输运层或限制层制作多层器件的途径来实现,基于上述考虑,我们以PPCP为发光层(PPCP是一种荧光效率较高的蓝光材料^[2-4],对其进行深入研究尚未见有文献报道_,设计了4种不同电子传输层(ETL)的三层 结构的OLED,为研究电子传输层对器件性能的影响,我们还制备了不含电子传输层的双层器件,结果表明,通过选择合适的ETL,OLED的发光亮度及发光效率会有很大程度的改善。  相似文献   

3.
合成了一种聚苯撑乙烯撑(PPV)主链上含有电子传输基团的新型结构电子聚合物(O-PPV).该低聚物的Mw=1000,Tg=197℃,可溶于氯仿和四氢呋喃.单层O-PPV器件的发光效率约为单层PPV器件的5~8倍.进一步构造了结构为空穴传输特性材料/O-PPV和O-PPV/电子传输特性材料的双层器件来研究O-PPV的载流子传输特性,实验结果表明,O-PPV是一种具有明显两性载流子传输的特性材料.  相似文献   

4.
本文设计合成了一系列以吖啶为核的荧光小分子发光化合物(1~4),通过在分子两侧引入不同的取代基来调节化合物的能级、载流子传输性质.对这些材料的光物理、电化学、热力学和能量转移性能进行了系统表征.结果表明这些材料具有高的发光效率、合理的能级结构和良好的主/客体能量转移特性.以这些材料为发光层的器件显示了优良的性能,电致发光器件的开启电压为2.4V,最高效率可达到13.3lm/W和11.8cd/A.  相似文献   

5.
利用紫外-可见吸收光谱和电化学方法表征了三个系列新型的1,3,4-噁二唑类化合物的能级结构.设计并制备了以噁二唑衍生物与MEH-PPV的共混物作为发光层的电致发光器件(LED),比较了不同结构噁二唑引入发光层后对器件性能的影响.研究结果表明,以共混物为发光层的LED,其最大亮度可达到11810cd/m2(8.5V),最大流明效率为1.1cd/A.与纯MEH-PPV单层发光器件相比,最大亮度提高了约40倍.结果表明,噁二唑类衍生物具有优良的电子传输特性,将其引入发光层能有效地提高LED的性能.  相似文献   

6.
一维(1D)材料与二维(2D)材料的结合可形成独特的混合维度异质结,其在继承2D/2D范德瓦尔斯异质结的独特物性之外,还具有丰富的堆叠构型,为进一步调控异质结的结构及性能提供了新的可操控自由度。p型1D单壁碳纳米管(SWCNT)与n型2D二硫化钼(MoS2)的结合,为调控异质结的能带结构及器件性能提供了丰富的选择。本文直接在高密度、手性窄分布的SWCNT定向阵列及无序薄膜表面原位生长MoS2,制备出高质量1D SWCNT/2D MoS2混合维度异质结。深入分析形核点的表面形貌与结构,提出了“吸附-扩散-吸附”生长机制,用于解释混合维度异质结的生长。利用拉曼光谱分析,证实SWCNT与MoS2间存在显著的电荷转移作用,载流子可在界面处快速传输,为后续基于此类1D/2D异质结的新型电子及光电器件的设计与制备提供了新思路。  相似文献   

7.
采用不同材料作为有机电致发光器件(OELDs)的电极, 制备了基本结构为[阳极/NPB(40 nm)]/Alq3(50 nm)/阴极]的异质结双层器件, 并通过改变OELDs器件的阴极或阳极来研究电极材料对器件光电性能的影响. 研究结果表明, 各器件电流-电压(I-V)关系的基本特征与陷阱电荷限制电流(TCLC)机制的拟合情况相符. 由于有机材料本身能级的无序性以及载流子迁移率对温度和电场的依赖性, 不同电极的载流子注入能力与其功函数并无直接关系. 双层器件中由于空穴传输层的引入, 使得载流子复合区域位于有机层异质结界面处, 降低了金属阴极对激子的猝灭作用, 从而大大提高了器件性能. 此外, 金属电极OLEDs器件结构具有的微腔效应会导致发射光谱的位移和谱峰宽度变窄, 这表明通过对金属电极的表面改性和优化可使器件性能超过常规结构的器件.  相似文献   

8.
左氧氟沙星(LOFX)是一种知名的抗菌药物, 它的价格非常便宜, 且有成熟的合成和纯化技术. 本文中首次将LOFX作为一种蓝光发光材料和电子传输材料应用于有机电致发光器件(OLED)中. 通过热重分析、UVVis吸收光谱、发射光谱以及循环伏安曲线详细地表征了LOFX的热学及光物理特性. LOFX有高的分解温度,为327 ℃; HOMO、LUMO能级分别为-6.2 和-3.2 eV, 光学带隙为3.0 eV. 以LOFX作为客体材料, 掺杂在主体材料4,4'-二(9-咔唑)联苯(CBP)中制备了蓝光OLED, 该器件的电致发光(EL)发射峰位于452 nm, 最大亮度为2315 cd·m-2. 进一步, 选择8-羟基喹啉铝(Alq3)作为参考材料, 分别以LOFX和Alq3作为电子传输材料制备了结构相同的单载流子器件和绿色磷光OLED. 在相同的电压下, 以LOFX作为电子传输材料的单载流子器件的电流密度比以Alq3作为电子传输材料的单载流子器件更高. 同时, 以LOFX作为电子传输材料的绿色磷光OLED获得更高的器件效率. 从这些EL性能可以看出, LOFX同时也是一很好的电子传输材料.  相似文献   

9.
以三苯基亚磷酸酯为双环金属化配体,2,2'-联吡啶-4,4'-二甲酸乙酯为辅助配体,合成了一种中性铱配合物(1).通过核磁共振波谱(NMR)、高分辨质谱(HRMS)及X射线单晶衍射分析对配合物的结构进行了确认.对配合物的光物理性能进行了表征,结果表明,掺杂于聚甲基丙烯酸甲酯(PMMA)中的配合物表现出黄光发射,波长为581 nm,量子效率高达29.4%,是含联吡啶羧酸类配体的铱配合物中最高的,发光寿命为1.08μs.配合物最高已占轨道(HOMO)能级为-5.43 e V,最低未占轨道(LUMO)能级为-3.18 e V.配合物表现出明显的聚集诱导发光增强性质,在水/四氢呋喃混合溶剂中,聚集后发光增强了17倍.用该配合物制备的掺杂有机电致发光器件的外量子效率高达8.9%,最大电流效率和功率效率分别为9.7 cd/A和5.2 lm/W.研究结果表明,双环金属化的亚磷酸酯配体对提高联吡啶羧酸酯类铱配合物的发光效率和扩展应用范围具有重要作用.  相似文献   

10.
本研究针对蓝光主体材料相对缺乏的现状,利用有机电致磷光器件高效率的优势,选择1,2,4-三唑为电子传输功能基团、咔唑为空穴传输功能基团,设计、制备了新型主体材料oCzTz。通过邻位取代方式实现了分子立体构型高度扭曲,从而使分子的三重态能量达到3.01eV;oCzTz具有较高的热分解温度(353℃)和玻璃化转变温度(110℃);量化计算显示,分子的前线轨道在咔唑和三唑基团之间高度分离。以oCzTz为主体、以FIrpic为发光客体的天蓝光电致磷光器件启亮电压为3.4V,电流效率和功率效率分别高达37.2cd·A-1和29.2lm·W-1,是以TPBI为电子传输层的同类器件的最高效率之一。  相似文献   

11.
Lee  Joo-Won  kim  jai-Kyeong  Yoon  Young-Soo 《中国化学》2010,28(1):115-118
High efficiency organic light‐emitting‐devices (OLED) have been fabricated by incorporation of a polymeric layer as a controller of the unbalanced charge. In device configuration of ITO/PEDOT:PSS/PVK/Alq3/LiF:Al, poly(N‐vinylcarbazole) (PVK) was selected as a block‐ing layer (BL) because it has a hole transporting property and a higher band gap, especially a lower LUMO level than the emitting layer (Alq3) and a higher HOMO level than the hole injection layer (PEDOT: PSS). As a result, the optimal structure with this bl layer showed a peak efficiency of 6.89 cd/A and 2.30 lm/W compared to the device without the PVK layer of 1.08 cd/A, 0.27 lm/W. This result shows that the PVK layer could effec‐tively block the electrons from metal cathode and confine them in the emitting layer and accomplish the charge balance, which leads to enhanced hole‐electron balance for achieving high recombination efficiency.  相似文献   

12.
The charge recombination rate in poly(3-hexyl thiophene)/TiO(2) nanorod solar cells is demonstrated to correlate to the morphology of the bulk heterojunction (BHJ) and the interfacial properties between poly(3-hexyl thiophene) (P3HT) and TiO(2). The recombination resistance is obtained in P3HT/TiO(2) nanorod devices by impedance spectroscopy. Surface morphology and phase separation of the bulk heterojunction are characterized by atomic force microscopy (AFM). The surface charge of bulk heterojunction is investigated by Kelvin probe force microscopy (KPFM). Lower charge recombination rate and lifetime have been observed for the charge carriers in appropriate heterostructures of hybrid P3HT/TiO(2) nanorod processed via high boiling point solvent and made of high molecular weight P3HT. Additionally, through surface modification on TiO(2) nan,orod, decreased recombination rate and longer charge carrier lifetime are obtained owing to creation of a barrier between the donor phases (P3HT) and the acceptor phases (TiO(2)). The effect of the film morphology of hybrid and interfacial properties on charge carrier recombination finally leads to different outcome of photovoltaic I-V characteristics. The BHJ fabricated from dye-modified TiO(2) blended with P3HT exhibits 2.6 times increase in power conversion efficiency due to the decrease of recombination rate by almost 2 orders of magnitude as compared with the BHJ made with unmodified TiO(2). In addition, the interface heterostructure, charge lifetime, and device efficiency of P3HT/TiO(2) nanorod solar cells are correlated.  相似文献   

13.
In this study, two host materials, pCzBzbCz and pCzPybCz , are synthesized to achieve a high efficiency and long lifetime of blue thermally activated delayed fluorescence organic light-emitting diodes (TADF-OLEDs). The molecular design strategy involves the introduction of a pyridine group into the core structure of pCzPybCz as an electron-withdrawing unit, and an electron-donating phenyl group into the structure of pCzBzbCz . These host materials demonstrate good thermal stability and high triplet energy (T1=3.07 eV for pCzBzbCz and 3.06 eV for pCzPybCz ) for the fabrication of blue TADF-OLEDs. In particular, pCzPybCz -based OLED devices demonstrate an external quantum efficiency (EQE) of 22.7 % and an operational lifetime of 24 h (LT90, time to attain 90 % of initial luminance) at an initial luminance of 1000 cd m−2. This superior lifetime could be explained by the C−N bond dissociation energy (BDE) in the host molecular structure. Furthermore, a mixed-host system using the electron-deficient 2,4-bis(dibenzo[b,d]furan-2-yl)-6-phenyl-1,3,5-triazine (DDBFT) is proposed to inhibit the formation of the anion state of our host materials. In short, the device operational lifetime is further improved by applying DDBFT. The carbazole-based asymmetric host molecule containing a pyridine core realizes a high-efficiency blue TADF-OLED showing a positive effect on the operating lifetime, and can provide useful strategies for designing new host materials.  相似文献   

14.
合成了四氮杂大环化合物,Tetraazamacrocycliccompound,6,12,19,25 tetramethyl 7,11:20,24 dinitrilo dibenzo[b,m][1,4,12,15]tetra azacyclo docosine(TMCD).TMCD作为电子传送材料,探讨了它在有机电致发光器件中的应用.制作了结构为:玻璃基板/ITO阳极/NPD/Alq/TMCD/LiF/Al阴极的器件.评价的结果显示:该有机电致发光器件在538nm的绿色发光来源于Alq层.它的最大外部量子效率为0.84%,视感效率为1.30lm/W.最先提出了四氮杂大环化合物做为电子传送材料,可应用于电致发光领域.  相似文献   

15.
Light-emitting diodes with perovskite luminophores have great potential in next-generation displays because of their exceptional color purity with narrow emission bandwidth, broadband color tunability, and solution processability. However, their low luminescent efficiency is a critical drawback. Here, we report the first demonstration of a multicolor, large-area, perovskite display, which can be made flexible by using an optimized perovskite emissive layer sandwiched between inorganic metal oxide charge transport layers, all of which are coated via a facile solution process. We show that advanced interfacial engineering, especially the energy level alignment at the interface, plays a vital role in determining the device performance because of its effects on charge injection, transport, and recombination. These devices exhibit maximum current and power efficiencies of 74.25 cd A?1 and 89.72 lm/w for green emission, 21.40 cd A?1 and 25.84 lm/w for red emission, and 15.21 cd A?1 and 15.84 lm/w for blue emission, respectively. Furthermore, with the introduction of inorganic charge transport layers, these devices exhibit high environmental stability, and the encapsulated devices have operating lifetimes exceeding 450 h with an initial brightness of 1000 cd/m2.  相似文献   

16.
We report two bipolar host materials bearing hole-transport benzofurocarbazole/indenocarbazole cores and an electron-transport benzimidazole moiety for red phosphorescence organic light emitting devices (PhOLEDs). The two novel host materials exhibited excellent physical properties with high thermal stabilities, appropriate HOMO-LUMO energy levels and balanced charge transport. Both of them were applied to fabricate red PhOLEDs as promising host materials, and 7,7-dimethyl-5-(4′-(1-phenyl-1H-benzo[d]imidazol-2-yl)-[1,1′-biphenyl]-4-yl)-5,7-dihydroindeno[2,1-b]carbazole (ICBI) based device demonstrated outstanding electroluminescence performance with the maximum current efficiency, power efficiency and external quantum efficiency of 33.0 cd/A, 13.9 lm/W and 18.9%, respectively.  相似文献   

17.
The performance of a blue polymer light‐emitting diodes (PLED) was significantly improved by doping a controlled amount (<1%) of a hole transport molecule N,N′‐bis‐(1‐naphthyl)‐N,N′‐diphenyl‐1,1′‐biphenyl‐4,4″‐diamine (NPB) into the emitting layer. Hole carrier mobility of the blue emitting polymer, BP105 (trade name of The Dow Chemicals Co.), increased from 5.27 × 10‐7 cm‐2/Vs of the pristine BP105 to 1.80 × 10‐6 cm‐2/Vs with the addition of 1% NPB in BP105. The enhanced carrier mobility greatly promoted performance of a blue PLED device with a device structure of ITO/PEDOT:PSS/BP105+x% NPB/LiF/Ca/Al. Luminance increased from 573 cd/m2 to 2,720 cd/m2 at 6V and efficiency increased from 1.1 lm/W to 1.6 lm/W at 1,000 cd/m2 with 1% NPB in BP105. The most important improvement was an increase in the lifetime of the blue device from 80 to 120 hours at an initial luminance of 400 cd/m2. We found that by choosing the appropriate dopant with good energy alignment and controlled dopant concentration, the performance of a blue PLED device could be greatly improved.  相似文献   

18.
By adopting a phosphorescent host/guest system consisting of blue iridium complex as host and a series of phosphorescent dyes as guest, efficient and low-voltage monochromic organic light-emitting devices(OLEDs) were fabricated. The devices with blue iridium host have higher power efficiency than the device with the conventional host 4,4'-N,N'-dicarbazole-biphenyl. The enhancement of the maximum power efficiency in green phosphorescent device can reach 37.2%. Dichromatic white OLED could be achieved by simply adjusting the concentration of the orange dyes. At a brightness of 1000 cd/m2, the power efficiency of the white device is 8.4 lm/W with a color rendering index of 76.  相似文献   

19.
《中国化学快报》2023,34(6):107641
The domain purity, material crystallinity and distribution at the interface between the active layer and the transport layer have an important impact on the performance of organic solar cells (OSCs) and organic photodetectors (OPDs), while this focal issue has received less attention in previous studies. From this perspective, a new method to simultaneously enhance the performance of OSC and OPD is proposed, namely, using a sequential deposition method to first construct a compact stacking structure of dual-donor (D18-Cl:PTO2) eutectic in the donor layer, and then induce the ordered deposition of the acceptor (Y6). Compared with the conventional bulk heterojunction (BHJ), the active layer realized by this method not only improves the crystallinity and stacking order of the constituent material on the surface of the transport layer, but also regulates a good vertical distribution, which is conducive to improving the charge transport and extraction efficiency, reducing the leakage current, and enhancing the stability of the device. As a result, the OSC device based on the D18-Cl:PTO2/Y6 structure achieves a power conversion efficiency of up to 17.65% and good light-degradation stability, which is much better than that of BHJ-based OSC (PCE of 16.37%). For the OPD, the dark current at reverse bias is reduced by more than an order of magnitude, and the maximum responsivity is improved to 0.52 A/W through the optimization of the donor phase at the interface. Moreover, the strategy does not require additional post-processing compared to the BHJ preparation, which reduces the device construction cost and process complexity, providing an effective way for developing high-performance organic optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号