首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Separating oscillating flows in an internal, adverse pressure gradient geometry are studied experimentally. Simultaneous velocity and pressure measurements demonstrate that the minor losses associated with oscillating flow in an adverse pressure gradient geometry can be smaller or larger than those for steady flow. Separation is found to begin high in the diffuser and propagate downward. The flow is able to remain attached further into the diffuser with larger Reynolds numbers, small displacement amplitudes, and smaller diffuser angles. The extent of separation grows with L 0/h. The minor losses grow with increasing displacement amplitude in the measured range 10 < L 0/h < 40. Losses decrease with increasing Re δ in the measured range of 380 < Re δ < 740. It is found that the losses increase with increasing diffuser angle over the measured range of 12° < θ < 30°. The nondimensional acoustic power dissipation increases with Reynolds number in the measured range and decreases with displacement amplitude.  相似文献   

2.
This paper presents the results of a parametric experimental study of free swirling flow at the exit of a flat-vane axial swirler. A total of 16 data sets were acquired by combining four swirler vane angles (22°, 29°, 50.5°, and 58.3°) and four exit nozzles of different diameters (30, 40, 52, and 76 mm). Sophisticated pressure probes consisting of precise microphones and a two-component LDV system were used to investigate the effect of these geometrical parameters on swirling flow regimes characterized by the swirl number. Particular attention was paid to the precessing vortex core (PVC) phenomenon observed at the exit of the swirler nozzle. It has been shown that by varying the vane angle and the diameter of the exit nozzle, it is possible to independently control the swirl number value and the occurrence of a PVC. A distinct correlation has been found between the PVC-induced pressure pulsations detected by acoustic probes and the tangential velocity fluctuations measured by LDV. The use of microphones provides a quick way to measure the frequency response of swirl flow in a wide range of geometries and flow configurations. The PVC effect does not occur at low subcritical values of the integral swirl number (S < 0.5) and in the case of strong swirl flow (Sg = 0.9 and 1.2) in the absence of constriction by the nozzle (De/D0 = 1). The disappearance of the PVC effect for strong swirl flow without constriction is due to the extreme displacement of the flow to the nozzle walls. The absence of a PVC in the flow was inferred not only from measurements of the frequency response of the flow over a wide range of Re numbers, but also from the absence of specific markers in velocity RMS distributions. Measurement results are used to derive an empirical correlation of the integral swirl number and the Strouhal number with a modified geometric swirl number. This allows a generalization of the frequency characteristics of swirling flows with a PVC for flat-vane axial swirlers, which are widely used in engineering.  相似文献   

3.
Centrifugal spray injected at various angles in gas crossflow has been studied experimentally using PIV visualization system and image-processing techniques. Experiments were carried out inside a rectangular duct (95 mm × 95 mm in cross-section) at ambient temperature and pressure, with different gas Reynolds numbers (vary from 12,900 to 45,000) and three injection angles (60°, 90° and 120°). The spray angle of the centrifugal nozzle is 80°, with D32 of 80 μm. The instantaneous images of droplets distribution and the values of the line-averaged D32 at different positions on the cross-sections along the flow field for each condition were obtained, and their flow field configurations were achieved. Quantitative assessments of mixing degree between two phases for different injection angles were determined using a spatial unmixedness parameter. It is found that the addition of droplets into the gas crossflow enhanced the turbulence intensity of the gas crossflow and caused different-scale vortices. The flow field structure, to a great extent, is dependent on the injection angle. The entrainment and centrifugal force of large vortex lead to uneven droplet distribution and moreover influence the mixing of droplets and gas crossflow. A better mixing result can be obtained with the injection angle of nozzles of 60°.  相似文献   

4.
In this paper, we use a laser optical technique to investigate the characteristics of a wavy Taylor vortex flow between two concentric cylinders, with the inner cylinder subjected to a wide range of predetermined acceleration and the outer one at rest. We focus on the inner/outer radius ratio of 0.894, with an acceleration (dRe/dt*) from 0.1123 to 2,247, and Reynolds number from Re/Re c =1.0 to 36. The results show that, with increasing Reynolds number, there is an initial increase in the wavelength of the wavy vortex flow (λ), and a decrease in the wave speed (c) before they asymptote to a constant value, which is a function of the acceleration. As for the wave amplitude (A), it is found that the effect of acceleration is significant only in a very narrow range of Reynolds numbers. Received: 21 August 2001 / Accepted: 22 November 2001  相似文献   

5.
Experimental investigation of vortex rings impinging on inclined surfaces   总被引:1,自引:0,他引:1  
Vortex–ring interactions with oblique boundaries were studied experimentally to determine the effects of plate angle on the generation of secondary vorticity, the evolution of the primary vorticity and secondary vorticity as they interact near the boundary, and the associated energy dissipation. Vortex rings were generated using a mechanical piston-cylinder vortex ring generator at jet Reynolds numbers 2,000–4,000 and stroke length to piston diameter ratios (L/D) in the range 0.75–2.0. The plate angle relative to the initial axis of the vortex ring ranged from 3 to 60°. Flow analysis was performed using planar laser-induced fluorescence (PLIF), digital particle image velocimetry (DPIV), and defocusing digital particle tracking velocimetry (DDPTV). Results showed the generation of secondary vorticity at the plate and its subsequent ejection into the fluid. The trajectories of the centers of circulation showed a maximum ejection angle of the secondary vorticity occurring for an angle of incidence of 10°. At lower incidence angles (<20°), the lower portion of the ring, which interacted with the plate first, played an important role in generation of the secondary vorticity and is a key reason for the maximum ejection angle for the secondary vorticity occurring at an incidence angle of 10°. Higher Reynolds number vortex rings resulted in more rapid destabilization of the flow. The three-dimensional DDPTV results showed an arc of secondary vorticity and secondary flow along the sides of the primary vortex ring as it collided with the boundary. Computation of the moments and products of kinetic energy and vorticity magnitude about the centroid of each vortex ring showed increasing asymmetry in the flow as the vortex interaction with the boundary evolved and more rapid dissipation of kinetic energy for higher incidence angles.  相似文献   

6.
In this paper we investigate experimentally the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid. Experiments are carried out by injecting a jet of dyed fresh water through a nozzle in the base of a cylindrical tank containing rapeseed oil. The fountain inlet flow rate and nozzle diameter were varied to cover a wide range of Richardson Ri (8 × 10−4 < Ri < 1.98), Reynolds Re (467 < Re < 5,928) and Weber We (2.40 < We < 308.56) numbers. Based on the Re, Ri and We values for the experiments, we have determined a regime map to define how these values may control the occurrence of the observed flow types. Whereas Ri plays a stronger role when determining the maximum penetration height, the effect of the Reynolds number is stronger predicting the flow behaviour for a specific nozzle diameter and injection velocity.  相似文献   

7.
A detailed numerical study is carried out to investigate fluid flow and heat transfer characteristics in a channel with heated V corrugated upper and lower plates. The parameters studied include the Reynolds number (Re = 2,000–5,500), angles of V corrugated plates (θ = 20°, 40°, 60°), and constant heat fluxs (q″ = 580, 830, 1,090 W/m2). Numerical results have been validated using the experimented data reported by Naphon, and a good agreement has been found. The angles of V corrugated plates (θ) and the Reynolds number are demonstrated to significantly affect the fluid flow and the heat transfer rate. Increasing the angles of V corrugated plates can make the heat transfer performance become better. The increasing Reynolds number leads to a more complex fluid flow and heat transfer rate. The numerical calculations with a non-equilibrium wall function have a better accuracy than with a standard wall function for solving high Reynolds numbers or complex flow problems.  相似文献   

8.
Cavitation structures in a large-scale (D = 8.25 mm), plain orifice style nozzle within a unique experimental rig are investigated using high-speed visualisation and digital image processing techniques. Refractive index matching with an acrylic nozzle is achieved using aqueous sodium iodide for the test fluid. Cavitation collapse length, unsteady shedding frequency and spray angles are measured for cavitation conditions from incipient to supercavitation for a range of Reynolds numbers, for a fixed L/D ratio of 4.85. Periodic cavitation shedding was shown to occur with frequencies between 500 and 2,000 Hz for conditions in which cavitation occupied less than 30% of the nozzle length. A discontinuity in collapse length was shown to occur once the cavitation exceeded this length, coinciding with a loss of periodic shedding. A mechanism for this behaviour is discussed. Peak spray angles of approximately θ ≈ 14° were recorded for supercavitation conditions indicating the positive influence of cavitation bubble collapse on the jet atomisation process.  相似文献   

9.
A large eddy simulation (LES) study was conducted to investigate the three-dimensional characteristics of the turbulent flow past wavy cylinders with yaw angles from 0° to 60° at a subcritical Reynolds number of 3900. The relationships between force coefficients and vortex shedding frequency with yaw angles for both wavy cylinders and circular cylinders were investigated. Experimental measurements were also performed for the validation of the present LES results. Comparing with corresponding yawed circular cylinders at similar Reynolds number, significant differences in wake vortex patterns between wavy cylinder and circular cylinder were observed at small yaw angles. The difference in wake pattern becomes insignificant at large yaw angles. The mean drag coefficient and the Strouhal number obey the independence principle for circular cylinders at yaw angle less than 45°, while the independence principle was found to be unsuitable for yawed wavy cylinders. In general, the mean drag coefficients and the fluctuating lift coefficients of a yawed wavy cylinder are less than those of a corresponding yawed circular cylinder at the same flow condition. However, with the increase of the yaw angle, the advantageous effect of wavy cylinder on force and vibration control becomes insignificant.  相似文献   

10.
The effects of exit-wedge angle on evolution, formation, pinch-off, propagation and diffusive mass entrainment of vortex rings in air were studied using digital particle image velocimetry. Vortex rings were generated by passing a solenoid-valve-controlled air jet through a cylindrical nozzle. Experiments were performed over a wide range of exit-wedge angles (10° ≤ α ≤ 90°) of the cylindrical nozzle, initial Reynolds numbers (450 ≤ Re ≤ 4,580) and length-to-diameter ratios (0.9 ≤ L/D ≤ 11) of the air jet. For sharp edges (α ≤ 10°), a secondary ring may emerge at high Reynolds numbers, which tended to distort the vortex ring if ingested into it. For blunt edges (α ≥ 45°), by contrast, stable vortex rings were produced. The formation phase of a vortex ring was found to be closely related to its evolution pattern. An exit-wedge angle of 45° was found to be optimal for rapid pinch-off and faster propagation and better stability of a vortex ring. Diffusive mass entrainment was found to be between 35% and 40% in the early stages of a vortex ring propagation and it gradually increased throughout the course of vortex ring propagation. Entrainment fraction was found to be sensitive to the L/D ratio of the initial jet and decreases when the L/D ratio is increased.  相似文献   

11.
S. Malavasi  E. Zappa 《Meccanica》2009,44(1):91-101
We investigate the impact of different boundary conditions on the flow field developing around a tilted rectangular cylinder with two different values of the aspect ratio (l/s=3 and 4). We are mainly interested in analyzing the changes in force coefficients and in the vortex shedding Strouhal number when the cylinder is placed at various distances from a bottom wall and different values of attack angle. The angle of attack ranges between −30° and +30° and the cylinder elevation above the bottom wall is varied between almost zero and 5 times the thickness of the cylinder. A large body of experimental results is related to the small elevation conditions at different attack angles, where the presence of the wall has a non-negligible effect on the behavior of the force coefficients and Strouhal number of the vortex shedding.  相似文献   

12.
The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re c  = 104), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number (Re c  = 104), transition effects are observed to be minor and the dynamic stall vortex system remains fairly coherent. For Re c  = 4 × 104, the dynamic-stall vortex system is laminar at is inception, however shortly afterwards, it experiences an abrupt breakdown associated with the onset of spanwise instability effects. The computed phased-averaged structures for both values of Reynolds number are found to be in good agreement with the experimental data. Finally, the effect of structural compliance on the unsteady flow past a membrane airfoil is investigated. The membrane deformation results in mean camber and large fluctuations which improve aerodynamic performance. Larger values of lift and a delay in stall are achieved relative to a rigid airfoil configuration. For Re c = 4.85 × 104, it is shown that correct prediction of the transitional process is critical to capturing the proper membrane structural response.  相似文献   

13.
In the framework of the ESA Future Launchers Preparatory Program (FLPP) an experimental study on the aerodynamic behavior during the re-entry phase of the Intermediate eXperimental Vehicle (IXV) configuration was conducted in the DLR hypersonic wind tunnel H2K in Cologne. Tests were carried out at Mach 6.0 and 8.7 with different flap deflection angles and the angle of attack varied continuously between 20° and 55° to investigate the flow topology as well as the aerodynamic forces and moments and the surface pressure distribution. The experimental data show that depending on the combination of the flap deflection angle (δ L/R) and angle of attack (α) the complex flow structure in the vicinity of the flaps significantly influences the vehicle’s aerodynamic coefficients. An analysis of this shock/shock and shock/boundary layer interaction causing flow separation with reattachment is performed.  相似文献   

14.
Mixing by secondary flow is studied by particle image velocimetry (PIV) in a developing laminar pulsating flow through a circular curved pipe. The pipe curvature ratio is η = r 0/r c  = 0.09, and the curvature angle is 90°. Different secondary flow patterns are formed during an oscillation period due to competition among the centrifugal, inertial, and viscous forces. These different secondary-flow structures lead to different transverse-mixing schemes in the flow. Here, transverse mixing enhancement is investigated by imposing different pulsating conditions (Dean number, velocity ratio, and frequency parameter); favorable pulsating conditions for mixing are introduced. To obviate light-refraction effects during PIV measurements, a T-shaped structure is installed downstream of the curved pipe. Experiments are carried out for the Reynolds numbers range 420 ≤ Rest ≤ 1,000 (Dean numbers 126.6 ≤ Dn ≤ 301.5) corresponding to non-oscillating flow, velocity component ratios 1 ≤ (β = U max,osc/U m,st) ≤ 4 (the ratio of velocity amplitude of oscillations to the mean velocity without oscillations), and frequency parameters 8.37 < (α = r 0(ω/ν)0.5) < 24.5, where α2 is the ratio of viscous diffusion time over the pipe radius to the characteristic oscillation time. The variations in cross-sectional average values of absolute axial vorticity (|ζ|) and transverse strain rate (|ε|) are analyzed in order to quantify mixing. The effects of each parameter (Rest, β, and α) on transverse mixing are discussed by comparing the dimensionless vorticities (|ζ P |/|ζ S |) and dimensionless transverse strain rates (|ε P |/|ε S |) during a complete oscillation period.  相似文献   

15.
 An experimental investigation was carried out to study the enhancement of the heat transfer from a heated flat plate fitted with rectangular blocks of 1 × 2 × 2 cm3 dimensions in a channel flow as a function of Reynolds number (Reh), spacing (S y ) of blocks in the flow direction, and the block orientation angle (α) with respect to the main flow direction. The experiments were performed in a channel of 18 cm width and 10 cm height, with air as the working fluid. For fixed S x =3.81 cm, which is the space between the blocks in transverse to the flow direction, the experimental ranges of the parameters were S y =3.33–4.33 cm, α=0–45°, Reh=7625–31550 based on the hydraulic diameter and the average velocity at the beginning of the test section in the channel. Correlations for Nusselt number were developed, and the ratios of heat transfer with blocks to those with no blocks were given. The results indicated that the heat transfer could be enhanced or reduced depending on the spacing between blocks, and the block orientation angle. The maximum heat transfer rate was obtained at the orientation angle of 45°. Received on 13 December 2000 / Published online: 29 November 2001  相似文献   

16.
In the present study, an experimental investigation of heat transfer and fluid flow characteristics of buoyancy-driven flow in horizontal and inclined annuli bounded by concentric tubes has been carried out. The annulus inner surface is maintained at high temperature by applying heat flux to the inner tube while the annulus outer surface is maintained at low temperature by circulating cooling water at high mass flow rate around the outer tube. The experiments were carried out at a wide range of Rayleigh number (5 × 104 < Ra < 5 × 105) for different annulus gap widths (L/D o = 0.23, 0.3, and 0.37) and different inclination of the annulus (α = 0°, 30° and 60°). The results showed that: (1) increasing the annulus gap width strongly increases the heat transfer rate, (2) the heat transfer rate slightly decreases with increasing the inclination of the annulus from the horizontal, and (3) increasing Ra increases the heat transfer rate for any L/D o and at any inclination. Correlations of the heat transfer enhancement due to buoyancy driven flow in an annulus has been developed in terms of Ra, L/D o and α. The prediction of the correlation has been compared with the present and previous data and fair agreement was found.  相似文献   

17.
The dependence of the flow coefficient of a gas jet ejected from an orifice/nozzle into a subsonic/transonic cross-flow on the flow and the jet Mach numbers, the off-design ratio, the nozzle inclination angle, β, and other determining parameters is considered. The physical nozzle flow pattern is constructed on the basis of experimental data obtained for 0.3< M<1.75 and β=60°, 90°, and 120°. The results of measuring the pressure upstream and downstream of the orifice and on the windward and leeward orifice generators are presented. It is shown that the flow rate coefficient of a jet ejected into a cross-flow may exceed that of a similar jet outflowing into a flooded space. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 65–70, May–June, 1998.  相似文献   

18.
The flow around the Ahmed body at varying Reynolds numbers under yawing conditions is investigated experimentally. The body geometry belongs to a regime subject to spanwise flow instability identified in symmetric flow by Cadot and co-workers (Grandemange et al., 2013b). Our experiments cover the two slant angles 25° and 35° and Reynolds numbers up to 2.784 × 106. Special emphasis lies on the aerodynamics under side wind influence. For the 35° slant angle, forces and moments change significantly with the yawing angle in the range 10° ≤ |β| ≤ 15°. The lift and the pitching moment exhibit strong fluctuations due to bi-stable flow around a critical angle β of ±12.5°, where the pitching moment changes sign. Time series of the forces and moments are studied and explained by PIV measurements in the flow field near the rear of the body.  相似文献   

19.
The ‘plug’ flow emerging from a long rotating tube into a large stationary reservoir was used in the experimental investigation of swirling jets with Reynolds numbers, Re = 600, 1,000 and 2,000, and swirl numbers, S = ΩR/U, in the range 0–1.1, to cover flow regimes from the non-rotating jet to vortex breakdown. Here Ω is the nozzle rotation rate, R is the radius of the nozzle exit, and U is the mean mass axial velocity. The jet was more turbulent and eddies shed faster at larger Re. However the flow criticality and shear layer morphology remained unchanged with Re. After the introduction of sufficient rotation, co-rotating and counter-winding helical waves replaced vortex rings to become the dominant vortex structure. The winding direction of the vortex lines suggests that Kelvin–Helmholtz and generalized centrifugal instability dominated the shear layer. A quantitative visualization study has been carried out for cases where the reservoir was rotating independently with S a  = Ω a R/U = ±0.35, ±0.51 and ±0.70 at Re = 1,000 and 2000, where Ω a is the rotation rate of the reservoir. The criterion for breakdown was found to be mainly dependent on the absolute swirl number of the jet, S. This critical swirl number was slightly different in stationary and counter-swirl surroundings but obviously smaller when the reservoir co-rotated, i.e. S c  = 0.88, 0.85 and 0.70, respectively. These results suggest that the flow criticality depends mainly on the velocity distributions of the vortex core, while instabilities resulting from the swirl difference between the jet and its ambient seem to have only a secondary effect.  相似文献   

20.
This study presents the direct numerical results of a drop solidifying on a plate, in which the difference between the growth angles is considered. The drop is two-dimensional with the presence of the left and right triple points, and the method used is a front-tracking technique. The growth angles at the right (ϕgr1) and left (ϕgr2) triple points are not equal, i.e. Δϕgr = ϕgr1ϕgr2 ≠ 0°. Unlike the identical growth angles, the growth angle difference results in an asymmetric drop after complete solidification. In the presence of the solid-to-liquid density ratio ρsl < 1.0 (i.e. volume expansion), the tip of the solidified drop shifts more to the right as Δϕgr increases in the range of 0°–12°. In addition, the angle at the solidified drop top (i.e. tip angle) increases with Δϕgr. We also pay attention to the effects of some other parameters (such as the wetting angle ϕ0, the growth angle ϕgr1 and ρsl) on the solidification process with the growth angle difference. The results reveal that the growth angle varied in the range of 6°–24° has a minor effect on the movement of the tip to the right while the tip shift increases with an increase in ϕ0 in the range of 60°–130° or with a decrease in ρsl in the range of 0.8–1.1. The tip angle increases with an increase in ρsl or with a decrease in ϕgr1 or ϕ0. We also investigate the solidification process under the influence of the Bond number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号