首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bipolar membranes (BPMs) are catalytic membranes for electro-membrane processes splitting water into protons and hydroxyl ions. To improve selectivity and current efficiency of BPMs, we prepare new asymmetric BPMs with reduced salt leakages. The flux of salt ions across a BPM is determined by the co-ion transport across the respective layer of the membrane. BPM asymmetry can be used to decrease the co-ion fluxes through the membrane and shows that the change of the layer thickness and charge density of the corresponding ion exchange layer determines the co-ion flux. The modification of a commercial BP-1 with a thin additional cation exchange layer on the cationic side results in a 47% lower salt leakage. Thicker layers result in water diffusion limitations. In order to avoid water diffusion limitations we prepared tailor made BPMs with thin anion exchange layers, to increase the water flux into the membrane. Therefore a BPM could be prepared with a thick cation exchange layer showing a 62% decreased salt ion leakage through the cationic side of the membrane.  相似文献   

2.
PVA-GA-CS/PVA-Fe-SA bipolar membrane was prepared by a paste method. PVA-sodium alginate (SA) and PVA-chitosan (CS) were cross-linked by FeCl3 and glutaraldehyde (GA), respectively. The charge densities of PVA-CS and PVA-SA solutions were determined by the colloid titration. The swelling level of bipolar membrane was in the range of 25–85%, meanwhile the permeability and the ion-exchange capacity as well as co-ion transport properties was investigated. FTIR was applied to analyze the functional groups of the bipolar membrane. Furthermore, SEM photographs of the BPM cross-section illustrated a structure that consists of an anion layer (PVA-GA-CS) and a cation layer (PVA-Fe-SA). TG analysis of PVA-GA-CS/PVA-Fe-SA bipolar membranes exhibited a good thermal stability. PVA-GA-CS/PVA-Fe-SA bipolar membranes were used as the separator in the electrolysis cell for electro-generation of 2,2-dimethyl-3-hydroxypropionic acid. The average current efficiency was 52.2%, and the highest current efficiency reached 68.9%.  相似文献   

3.
The current efficiencies of the water dissociation water and the voltage-current characteristics of the bipolar (asymmetric bipolar) membranes were measured in a two-chamber electrochemical cell. The cell was formed of an MB-3 bipolar membrane or an asymmetric bipolar membrane, which is an MA-40 heterogeneous membrane with a thin surface layer in the form of a cation-selective homogeneous film and MA-40 and MA-41 heterogeneous monopolar membranes. The dissociation of water on MA-40 in 0.01 M sodium chloride decreased the current efficiency of the acid and alkali both in the channel with a bipolar membrane and in the channel with an asymmetric bipolar membrane. The effective ion transport numbers across MA-40 and MA-41 at different pH values were determined. The water dissociation rate on MA-40 decreased at pH > 9.5. A kinetic model of the electrodialysis of a dilute solution of sodium chloride in a two-chamber unit cell with a bipolar and anionite membranes was suggested.  相似文献   

4.
Bipolar membrane electrodialysis is used in a three-compartment configuration to regenerate formic acid and sodium hydroxide from sodium formate. A previous study showed that the diffusion of molecular formic acid induces the loss of acid current efficiency. The present study shows the following results: the diffusion of molecular formic acid through the bipolar membrane explains quantitatively the presence of sodium formate in the sodium hydroxide solution. The loss of acid current efficiency is only due to diffusion of molecular acid through both anion-exchange and bipolar membranes. The sodium hydroxide current efficiency is determined by acid diffusion through the bipolar membrane and OH leakage through the cation-exchange membrane. The flux of acid diffusion through the membranes is proportional to acid concentration and depends on sodium hydroxide concentration for bipolar membrane and on sodium formate concentration for anion-exchange membrane. The flux rates vary with temperature.  相似文献   

5.
Within the framework of the mathematical model of Nernst-Planck-Poisson, an attempt is undertaken to theoretically describe the electrodiffusion of ions in the system diffusion layer/monopolar ionexchange membrane, which is accompanied by dissociation of water molecules. The formulas for estimating the current density transferred through a monopolar membrane by hydrogen or hydroxyl ions formed in dissociation of water in the space-charge region are derived. The rate constants and other parameters of dissociation of water molecules in the space-charge region of monopolar membranes under conditions of stabilization of the diffusion layer thickness are calculated. Their comparative analysis with the similar characteristics of bipolar membranes is carried out. For the phosphoric-acid heterogeneous membrane MK-41 in which the polarization conditions in the current density range under study are not so severe and the reaction layer is not being depleted as in the bipolar membrane MB-3 (contains the same phosphoric-acid groups), it is shown that only single-charged phosphoric-acid groups are involved in the water dissociation reaction. For MK-41, the calculated constants of the heterolytic reaction of water molecule dissociation are lower than for the heterogeneous membrane MA-40 containing ternary and quaternary amino groups. It is confirmed that the nature of ionogenic groups in membranes is a factor that determines the rate of water dissociation in systems with ion-exchange membranes.  相似文献   

6.
The electrochemical characteristics of one commercial bipolar ion exchange membrane and of two home-made bipolar membranes are investigated over a range of current densities up to 2 kA m−2. Studies are performed using galvano-potentiometry (i/V) and impedance spectrometry methods. The temperature dependence of i/V curves enables the determination of the activation energies related to the overall electrochemical process of H+ and OH production by water dissociation at the membrane junction. The physical analysis of the experimental data is made on the basis of a neutral layer model for the membrane junction. The theoretical treatment leads first to establish a thermodynamic framework insuring the validity of the criteria used in the interpretation of the results in terms of the model. Application of current electrochemical kinetic concepts at steady state involves the idea that, in the presence of an efficient catalyst, a quasi-reversible state of the water dissociation reaction may be achieved at the junction. A theoretical approach is developed for treating the data obtained with transient measurements in absence of co-ion transport. This study reveals the intrinsic roles played in the overall process of respectively: (a) the H+ and OH ion transport; (b) the electrical double layers at the membrane junction boundaries; and (c) the chemical mechanism of water dissociation.  相似文献   

7.
The pH of a dilute chloride-hydrocarbonate solution and the concentrations of chloride ions and carbonic acid anions at the outlet of the alkaline and acid chambers of the electrodialysis cell formed by bipolar and anion-exchange membranes were determined. The decrease in the concentration of hydrocarbonate ions in the alkaline chamber with growth of current density was not equal to its increase in the acid chamber. This disbalance was caused by two concurrent processes: the electromigration ion transport through the anion-exchange membrane and the chemical reactions of hydrocarbonate ions with the water dissociation products formed on the bipolar and anion-exchange membranes. A mathematical model was suggested to describe the electrodialysis correction of the pH of a dilute chloride-hydrocarbonate solution. The experimental data on the correction of pH of the chloride-hydrocarbonate solution were well approximated by both the model that takes into account water dissociation on the anion-exchange membrane and the simplified model that neglects water dissociation. The experimental data agreed well with the results of calculations by the model in which the effective anion transport numbers were calculated only from ion concentrations and diffusion coefficients in solution. This reflects the outer diffusion character of the kinetics of ion transport through the anion-exchange membrane, with pH of dilute solutions corrected by electrodialysis.  相似文献   

8.
Starburst dendrimer polyamidoamine (PAMAM) with ellipsoidal or spheroidal shape is structure-regular and has much more amino groups than conventional polymers. This paper investigates the possibility of these amino groups on water dissociation in a bipolar membrane interface. To do this, a bipolar membrane is prepared by casting the solution of sulfonated poly(phenylene oxide) (SPPO) in dimethyl formamide (DMF) on a commercial anion exchange membrane that is immersed in PAMAM aqueous solution in advance. The existence of PAMAM adsorbed on the membrane is proved by X-ray photoelectron spectroscopy (XPS), and the adsorption amount is evaluated by weighting method. The junction thickness of the prepared bipolar membrane is determined by electrochemical impedance spectroscopy (EIS), and the performance is evaluated by current–voltage curves. The experiments show that both the generation and concentration of PAMAM would strongly affect the characteristics of the bipolar membranes. There exists a transitional concentration for various generations PAMAMs to catalyze effectively the water dissociation, and above or below the transitional concentration the performance of bipolar membranes is decreasing. The higher the generation, the lower the concentration. Moreover, at a fixed solution concentration, there is not the simple relation of monotone decreasing or increasing between the performance of bipolar membranes and the generations of PAMAMs. All these can be explained according to the characteristics of PAMAMs combined with available water dissociation theory.  相似文献   

9.
The behaviour of bipolar membranes in NaCl and Na2SO4 solutions is discussed. The membranes are characterized in terms of their limiting current densities. Below the limiting current density the electric current is carried by salt ions migrating from the transition region between the anion and the cation exchange layer of the bipolar membrane. In steady state these ions are replaced by salt ions transported from the bulk solutions into the transition region by diffusion and migration due to the fact that the ion-exchange layers are not strictly permselective. When the limiting current density is exceeded, the salt transport from the transition region can no longer be compensated by the transport into the region and a drastic increase in the membrane resistance and enhanced water dissociation is observed. This water dissociation is described as being a combination of the second Wien effect and the protonation and deprotonation of functional groups in the membrane. The limiting current density is calculated from a mass balance that includes all components involved in the transport. The parameters used in the mathematical treatment are the diffusion coefficients of salt ions and water, the ion mobilities in the membrane, the fixed charge densitiy of the membrane, the pKb values of the functional groups and the solution bulk concentrations.  相似文献   

10.
In an unforced flowing NaCl solution in bulk, gravitational or electro convection supplies ions from bulk toward the membrane surface through a boundary layer. In a boundary layer formed on an anion exchange membrane, the convection converts to migration and diffusion and carries an electric current. In a boundary layer formed on a cation exchange membrane, the convection converts to migration and carry an electric current. In a forced flowing solution in bulk, the boundary layer thickness is reduced and gravitation or electro convection is disappeared. An electric current is carried by diffusion and migration on the anion exchange membrane and by migration on the cation exchange membrane. Ion transport in a boundary layer on the cation exchange membrane immersed in a NaCl solution is more restricted comparing to the phenomenon on the anion exchange membrane. This is due to lower counter-ion mobility in the boundary layer and the restricted water dissociation reaction in the membrane. The water dissociation reaction is generated in an ion exchange membrane and promoted due to the increased forward reaction rate constant. However, the current efficiency for the water dissociation reaction is generally low. The intensity of the water dissociation is more suppressed in the strong acid cation exchange membrane comparing to the phenomenon in the strong base anion exchange membrane due to lower forward reaction rate constant in the cation exchange membrane. In the strong acid cation exchange membrane, the intensity of electric potential is larger than the values in the strong base anion exchange membrane. Accordingly, the stronger repulsive force is developed between ion exchange groups (SO 3 ? groups) and co-ions (OH? ions) in the cation exchange membrane, and the water dissociation reaction is suppressed. In the strong base anion exchange membrane, the repulsive force between ion exchange groups (N+(CH3)3 groups) and co-ions (H+ ions) is relatively low, and the water dissociation reaction is not suppressed. Violent water dissociation is generated in metallic hydroxides precipitated on the desalting surface of the cation exchange membrane. This phenomenon is caused by a catalytic effect of metallic hydroxides. Such violent water dissociation does not occur on the anion exchange membrane.  相似文献   

11.
Structural change of an ion-exchange membrane under a high electric field was investigated by comparing water dissociation and the FTIR spectra between the virgin membrane and that used at an overlimiting current density. From a series of water dissociation experiments at overlimiting current densities, it was observed that water dissociation in an anion-exchange membrane used at an overlimiting current density was higher than that in a virgin membrane at the same current density. The FTIR study revealed that the tertiary amine groups are formed from the quaternary ammonium groups on the anion-exchange membrane surface where ion depletion occurs under the influence of the applied strong electric field. The occurrence of increased water dissociation is considered to be caused by the protonation and deprotonation of the tertiary amine groups in the anion-exchange membrane. On the other hand, there was no structural change for the cation-exchange membrane under the electric field investigated in this study, which is coincident with the results of water dissociation experiments for the CMX membrane. In addition, we found that membrane resistance, permselectivity, and plateau length of the current-voltage curve were affected by the converted tertiary amine groups depending on the solution pH.  相似文献   

12.
蔡燕红  陈日耀  郑曦  陈晓  陈震 《化学学报》2009,67(10):1127-1133
分别以FeCl3和戊二醛等对羧甲基纤维素(CMC)和聚丙烯酰胺(PAM)进行改性, 制备了mPAM/mCMC双极膜. 测定了PAM、CMC胶体的电荷密度, mPAM/mCMC双极膜离子交换能力、I-V工作曲线等参数. 用扫描电镜和红外光谱对膜形貌与成分作表征, 膜厚≈260 μm, 中间界面层厚为纳米级. 热重分析表明膜具有较好的热稳定性. 以mPAM/mCMC双极膜为电解槽的隔膜, 间接电氧化甘油为甘油醛. 在电场的作用下, 双极膜中间层中的水离解产生H+和OH−, OH−及时地传输入阳极室, 中和了电生成甘油醛时生成的H+, 促进了正向反应的进行. 槽电压稳定, 产率达91.6%, 电流效率为65.5%.  相似文献   

13.
The effect of hyperbranched aliphatic polyester (Boltorn series) on the water dissociation in bipolar membranes was firstly investigated in this paper. The bipolar membranes were prepared by immersing the anion exchange layer in a hyperbranched aliphatic polyester solution and then coating on the layer a polyphenylene oxide (SPPO) solution. The SEM observations proved the existence of hyperbranched aliphatic polyester at the membrane intermediate layer. The adsorption amount was evaluated by the oxygen content via XPS. The junction thickness of the prepared bipolar membrane was determined by electrochemical impedance spectroscopy (EIS), and the membrane performances were evaluated by current-voltage curves. The results showed that the amount and generation of Boltorn series, and temperature all affected I-V behaviors of the fabricated bipolar membranes, and the former two played the critical role. These effects were explained on the basis of the water dissociation theory and the characteristics of hyperbranched aliphatic polyester.  相似文献   

14.
This paper investigates the behavior of bovine serum albumin (BSA) during water dissociation on a bipolar membrane (BPM). BSA-modified BPM is prepared by immersing polyethylene anion exchange membrane in different concentration solutions of BSA, then casting the solution of sulfonated poly(phenylene oxide) (SPPO) in dimethyl formamide. The modification of BSA was evidenced by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The junction thickness was evaluated by electrochemical impedance spectroscopy (EIS). The results showed that the typical I-V curves for bipolar membranes were heavily affected by the BSA modifications: the more the adsorbed amount of BSA, the larger the potential drop across a bipolar membrane. The new phenomena is underlined by the intrinsic properties of BSA molecules: steric effects give rise to an increase in the thickness of the depletion layer, amphoteric properties weaken the electric field of the junction, and hydrophobicity makes the junction less wet. All of these cause negative effects on water dissociation on a bipolar membrane.  相似文献   

15.
The transference of water that results from ion migration through the nickel hydroxide precipitate membrane was studied in chloride, perchlorate, nitrate, and sulphate solutions to estimate the transference number of water and the co-ion transport. In the systems of univalent anions, the moles of water transported per mole of electrons in 0.1 N solutions is almost identical to the hydration number of each anion. This water flow decreases gradually as the concentration of external solution increases, because of increase in the co-ion (cation) transport with increasing concentration of the solution. In the system of sulphate solutions the co-ion transport is remarkable, the transport number of Na+ ions being 0.03 in 0.01 N, 0.27 in 0.10 N, and 0.50 in 0.5 N Na2SO4 solution. This large co-ion transport in Na2SO4 solution is attributed to the partical replacement of hydroxyl groups on the membrane by SO2?4 ions, which then acts as a negative fixed charge. The order of the selectivity for co-ion transport is K+ > Na+ > Li+ > Ni2+ ? Mg2+ in sulphate solutions and also in chloride solutions, although the transport number of the cations is much smaller in chloride solution than in sulphate solution.  相似文献   

16.
Waters containing low amounts of sodium formate and sodium hydroxide were processed in order to regenerate formic acid. The treatment was performed in three steps: wastewaters neutralization, sodium formate concentration by conventional electrodialysis (ED), and sodium formate splitting into formic acid and sodium hydroxide by bipolar membrane electrodialysis (BMED). A coupling of these processes was performed. ED was carried out with a current efficiency of 90% and sodium formate concentration up to 2 mol dm−3. BMED was performed in a three-compartment cell configuration. Formic acid solution up to 30% was obtained with current efficiency of 80% under a current density of 500 A m−2. Diffusion of molecular formic acid explains the current efficiency loss. The current efficiency varies with acid concentration and current density. Diffusion is more important through the anion-exchange membrane than through the bipolar membrane (2.5-fold).

Depleted salt produced in BMED was recycled to the neutralisation step.  相似文献   


17.
Russian Journal of Electrochemistry - Characteristics of an аMB-2m bipolar membrane containing ion-polymer with phosphoric-acid groups, catalytically active in the water dissociation...  相似文献   

18.
Polarization properties of electromembrane systems (EMS) consisting of a heterogeneous membrane, either the MK-41 phosphonic acid membrane or the MK-40 sulfonic acid membrane, and dilute sodium chloride solutions are investigated with the rotating membrane disk method. For the MK-41/0.01 M NaCl and MK-41/0.001 M NaCl EMS, effective ion transport numbers and partial current-voltage curves (CVC) are measured for sodium and hydrogen ions, and limiting-current densities and the diffusion-layer thickness are calculated as functions of the rotation rate of the membrane disk. With the theory of the overlimiting state of EMS, internal parameters of the systems under investigation—the diffusion-layer thickness, the space-charge distribution, and electric-field strengths in the diffusion layer and in the membrane—are calculated from experimentally obtained CVC and the dependence of effective transport numbers on current density. The catalytic influence of ionogenic groups on the dissociation rate of water is analyzed quantitatively. Partial CVC for H+ ions are calculated for the space-charge region in MK-40 and MK-41 membranes. Analogous CVC for bipolar membranes containing sulfonic acid and phosphonic acid groups are compared. The dissociation mechanism of water is the same in all EMS and is independent of the membrane type and the nature of the functional groups.  相似文献   

19.
This paper investigates the effect of polyethylene glycol (PEG) on the water dissociation of bipolar membranes. To do this, bipolar membranes were prepared by immersing anion exchange membranes in different-concentration solutions of different-molecular-weight PEGs and then casting the solutions of sulfonated polyphenylene oxide (SPPO) on the anion exchange membranes. All the bipolar membranes with PEG in the interface are evaluated by current-voltage curves. The experimental results prove that PEG has excellent catalytic function for water dissociation. Furthermore, this function is enhanced by both PEG amount (PEG concentration) and PEG molecular weight in the interface of a bipolar membrane.  相似文献   

20.
A bipolar membrane (BM) is composed of one cation and one anion ion-exchange layers joined together in series. In order to obtain the AC electrical impedance of a BM, a small sinusoidal current perturbation was superimposed to the DC current, and the resulting frequency-dependent impedance spectra were recorded under different conditions of electrical polarisation and temperature for five BMs. The experimental spectra were measured in three current ranges: below the limiting current region, at the onset of the overlimiting region and in the electric field enhanced water dissociation region. This allows for a better understanding of the contributions of the salt and water ions to the measured impedance spectra. Measurements of the impedance of the forward biased membrane were also carried out. Although the experimental impedance spectra appear to be in qualitative agreement with previous theoretical models incorporating the effect of the electric field enhanced water dissociation, a quantitative analysis of the results is not still possible due to the high number of parameters involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号