首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A piezoelectric screw dislocation in the matrix interacting with a circular inhomogeneity with interfacial cracks under antiplane shear and in-plane electric loading at infinity was dealt with. Using complex variable method, a general solution to the problem was presented. For a typical case, the closed form expressions of complex potentials in the inhomogeneity and the matrix regions and derived explicitly when the interface containsthe electroelastic field intensity factors weresingle crack. The image force acting on the piezoelectric screw dislocation was calculated by using the perturbation technique and the generalized Peach-Koehler formula. As a result, numerical analysis and discussion show that the perturbation influence of the interfacial crack on the interaction effects of the dislocation and the inhomogeneity is significant which indicates the presence of the interfacial crack will change the interaction mechanism when the length of the crack goes up to a critical value. It is also shown that soft inhomogeneity can repel the dislocation due to their intrinsic electromechanical coupling behavior.  相似文献   

2.
This paper presents a novel efficient procedure to analyze the two-phase confocally elliptical inclusion embedded in an unbounded matrix under antiplane loadings. The antiplane loadings considered in this paper include a point force and a screw dislocation or a far-field antiplane shear. The analytical continuation method together with an alternating technique is used to derive the general forms of the elastic fields in terms of the corresponding problem subjected to the same loadings in a homogeneous body. This approach could lead to some interesting simplifications in solution procedures, and the derived analytical solution for singularity problems could be employed as a Green's function to investigate matrix cracking in the corresponding crack problems. Several specific solutions are provided in closed form, which are verified by comparison with existing ones. Numerical results are provided to show the effect of the material mismatch, the aspect ratio, and the loading condition on the elastic field due to the presence of inhomogeneities.  相似文献   

3.
An analytical framework based on the homogenization method has been developed to predict the effective electromechanical properties of periodic, particulate and porous, piezoelectric composites with anisotropic constituents. Expressions are provided for the effective moduli tensors of n-phase composites based on the respective strain and electric field concentration tensors. By taking into account the shape and distribution of the inclusion and by invoking a simple numerical procedure, solutions for the electromechanical properties of a general anisotropic inclusion in an anisotropic matrix are obtained. While analytical forms are provided for predicting the electroelastic moduli of composites with spherical and cylindrical inclusions, numerical evaluation of integrals over the composite microstructure is required in order to obtain the corresponding expressions for a general ellipsoidal particle in a piezoelectric matrix. The electroelastic moduli of piezoelectric composites predicted by the analytical model developed in the present study demonstrate excellent agreement with results obtained from three-dimensional finite-element models for several piezoelectric systems that exhibit varying degrees of elastic anisotropy.  相似文献   

4.
The electroelastic interaction between a piezoelectric screw dislocation and an elliptical inhomogeneity containing a confocal blunt crack under infinite longitudinal shear and in-plane electric field is investigated. Using the sectionally holomorphic function theory, Cauchy singular integral, singularity analysis of complex functions and theory of Rieman boundary problem, the explicit series solution of stress field is obtained when the screw dislocation is located in inhomogeneity. The intervention law of the interaction between blunt crack and screw dislocation in inhomogeneity is discussed. The analytical expressions of generalized stress and strain field of inhomogeneity are calculated, while the image force, field intensity factors of blunt crack are also presented. Moreover, a new matrix expression of the energy release rate and generalized strain energy density (SED) are deduced. With the size variation of blunt crack, the results can be reduced to the case of the interaction between a piezoelectric screw dislocation and a line crack in inhomogeneity. Numerical analysis are then conducted to reveal the effects of the dislocation location, the size of inhomogeneity and blunt crack and the applied load on the image force, energy release rate and strain energy density. The influence of dislocation on energy release rate and strain energy density is also revealed.  相似文献   

5.
A generalized solution was obtained for the partially debonded elliptic inhomogeneity problem in piezoelectric materials under antiplane shear and inplane electric loading using the complex variable method. It was assumed that the interfacial debonding induced an electrically impermeable crack at the interface. The principle of conformal transformation and analytical continuation were employed to reduce the formulation into two Riemann-Hilbert problems. This enabled the determination of the complex potentials in the inhomogeneity and the matrix by means of series of expressions. The resulting solution was then used to obtain the electroeiastic fields and the energy release rate involving the debonding at the inhomogeneity-matrix interface. The validity and versatility of the current general solution have been demonstrated through some specific examples such as the problems of perfectly bonded elliptic inhomogeneity , totally debonded elliptic inhomogeneity, partially debonded rigid and conducting elliptic inhomogeneity, and partially debonded circular inhomogeneity.  相似文献   

6.
The present paper develops an analytical model for multi-electrodes in multi-layered piezoelectric actuators, in which the electrodes are vertical to and terminated at the edges of the medium and electroelastic field concentrations ahead of the electrodes in the multilayer piezoelectric actuators are examined. By considering a representative unit in realistic multilayers, the problem is formulated in terms of electric potential between the electrode tips and results in a system of singular integral equations in which the electric potential is taken as unknown function. Effects are investigated of electrode spacing and piezoelectric coupling on the singular electroelastic fields at the electrode tips, and closed-form expressions are given for the electromechanical field near the electrode tips. Exact solution for un-coupled dielectrics is provided, where no piezoelectric coupling is present. The English text was polished by Yunming Chen.  相似文献   

7.
Summary Piezoelectric material containing an inhomogeneity with different electroelastic properties is considered. The coupled electroelastic fields within the inclusion satisfy a system of integral equations solved in a closed form in the case of an ellipsoidal inclusion. The solution is utilized to find the concentration of the electroelastic fields around an inhomogeneity, and to derive the expression for the electric enthalpy of the electroelastic medium with an ellipsoidal inclusion that is relevant for various applications. Explicit closed-form expressions are found for the electroelastic fields within a spheroidal inclusion embedded in the transversely isotropic matrix. Results are specialized for a cylinder, a flat rigid disk and a crack. For a penny-shaped crack, the quantities entering the crack propagation criterion are found explicitly. Received 17 February 2000; accepted for publication 9 May 2000  相似文献   

8.
The anti-plane problem of an elliptical inhomogeneity with an interfacial crack in piezoelectric materials is investigated. The system is subjected to arbitrary singularity loads (point charge and anti-plane concentrated force) and remote anti-plane mechanical and in-plane electrical loads. Using the complex variable method, the explicit series form solutions for the complex potentials in the matrix and the inclusion regions are derived. The electroelastic field intensity factors, the corresponding energy release rates and the generalized strain energy density at the cracks tips are then provided. The influence of the aspect ratio of the ellipse, the crack geometry and the electromechanical coupling coefficient on the energy release rate and the strain energy density is discussed and shown in graphs. The results indicate that the energy release rate increases with increment of the aspect ratio of the ellipse and the influence of electromechanical coupling coefficient on the energy release rate is significant. The strain energy density decreases with increment of the aspect radio of the ellipse and it is always positive for the cases discussed. The energy release rate, however, can be negative when both mechanical and fields are applied.  相似文献   

9.
《Comptes Rendus Mecanique》2019,347(10):734-739
Conformal mapping and analytic continuation are employed to prove the existence of an internal uniform electroelastic field inside a non-elliptical piezoelectric inhomogeneity interacting with a screw dislocation. We focus specifically on the case when the piezoelectric matrix surrounding the inhomogeneity is subjected to uniform remote anti-plane mechanical and in-plane electrical loading and a constraint is imposed between the remote loading and the screw dislocation. The constraint can be expressed in a relatively simple decoupled form by utilizing orthogonality relationships between two corresponding eigenvectors. The internal uniform electroelastic field is found to be independent of the presence of the screw dislocation; moreover, it can be expressed in decoupled form.  相似文献   

10.
The solution for a circular inhomogeneity embedded in an infinite elastic matrix with a multilayered interphase plays a fundamental role in many practical and theoretical problems. Therefore, improved analysis methods for this problem are of great interest. In this paper, a new procedure is presented to obtain the exact stress fields within the inhomogeneity and the matrix under thermomechanical loadings, without the need of solving the full multiphase composite problem. With this short-cut method, the problem is reduced to a single linear algebraic equation and two coupled linear algebraic equations which determine the only three real coefficients of the stress field within the inhomogeneity. In particular, the average stresses within the inhomogeneity can be calculated directly from the three real coefficients. Further, the other three unknown real coefficients associated with the stress field in the matrix can be determined subsequently. Hence, the influence of the stepwise graded interphase on the stress fields is manifested by its effect on the six real coefficients. All these results hold for stepwise graded interphase composed of any number of interphase layers. Several examples serve to illustrate the method and its advantages over other existing approaches. The explicit solutions are used to study the design of harmonic elastic inclusions, and the effect of a compliant interphase layer on thermal-mismatch induced residual stresses. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
In this work, a micromechanical model for the estimate of the electroelastic behavior of the piezoelectric composites with coated reinforcements is proposed. The piezoelectric coating is considered as a thin layer with active electroelastic properties different from those of the inclusion and the matrix. The micromechanical approach based on the Green’s functions technique and on the interfacial operators is designed for solving the electroelasticity inhomogeneous coated inclusion problem. The effective properties of a piezoelectric composite containing thinly coated inclusions are obtained through the Mori–Tanaka’s model. Numerical investigations into electroelastic moduli responsible for the electromechanical coupling are presented as functions of the volume fraction and characteristics of the coated inclusions. Comparisons with existing analytical and numerical results are presented for cylindrical and elliptic coated inclusions.  相似文献   

12.
Most piezocomposites, which have been widely used in engineering, consist of piezoelectric inclusions and a non-piezoelectric matrix. Due to the limits of fabrication technology, it is hard to avoid the matrix intermingling with other non-piezoelectric inclusions, such as cavities. The non-piezoelectric inclusions can substantially affect performance of piezocomposites. In this paper we study the electromechanical fields in piezocomposites which are composed of a non-piezoelectric matrix embedded with both piezoelectric and non-piezoelectric inclusions. Closed-form relations are obtained for the effective electroelastic moduli of a piezocomposite with both piezoelectric and non-piezoelectric inclusions. The effective properties of a 1-3 type piezocomposite with non-piezoelectric spherical inclusions are analyzed carefully and explicit formulae for the effective electroelastic properties of a 1-3-0 piezocomposite are also obtained. The analysis shows that the effect of non-piezoelectric inclusions on the electroelastic properties of piezocomposites is significant and should not be neglected. The model proposed in this paper is expected to be useful for predicting and analyzing the overall electromechanical properties of piezocomposites with a non-piezoelectric matrix containing both piezoelectric and non-piezoelectric inclusions.  相似文献   

13.
In this paper, the mixed-mode penny-shaped crack problem for a functionally graded piezoelectric material (FGPM) strip is considered. It is assumed that the electroelastic properties of the strip vary continuously along the thickness of the strip, and that the strip is under in-plane electromechanical loadings. The problem is formulated in terms of a system of singular integral equations. The stress and electric displacement intensity factors are presented for various values of dimensionless parameters representing the crack size, the crack location, and the material nonhomogeneity.  相似文献   

14.
A continuum model is presented which is capable of generating the transient electroelastic field in piezoelectric composites of periodic microstructure, caused by the sudden appearance of localized defects. These defects are simulated by associating to every one of the ten piezoelectric parameters of the constituents a distinct damage variable. This procedure enables the modeling of localized cracks, soft and stiff inclusions and cavities. As a result, the constitutive equations of the piezoelectric phases appear in a specific form that includes eigen-electromechanical field variables which represent these defects. The method of solution is based on the combination of two distinct approach. In the first one, the representative cell method is employed according to which the periodic composite, which is discretized into several cells, is reduced to a problem of a single cell in the discrete Fourier transform domain. The resulting coupled elastodynamic and electric equations, initial, boundary and interfacial conditions in the transform domain are solved by employing a wave propagation in piezoelectric composite analysis which forms the second approach. The method of solution is verified by comparison with an analytical solution for the transient response of a piezoelectric material with a semi-infinite mode III-crack. Several applications are presented for the sudden formation of cracks in homogeneous and layered piezoelectric materials which are subjected to various types of electromechanical loading, and for the sudden appearance of a cavity. The effect of electromechanical coupling on the dynamic response is discussed.  相似文献   

15.
The present work focuses on the two-dimensional anti-plane time-harmonic dynamic Green's functions for a circular inhomogeneity immersed in an infinite matrix with an imperfect interface, where both the inhomogeneity and matrix are assumed to be piezoelectric and transversely isotropic. Two types of imperfect interface, the spring-type interface with electromechanical coupling and the membrane-type interface, are considered. The former type is often used to model the electromechanical damage along the interface while the latter is largely employed to simulate surface/interface effect of nano-sized inhomogeneity. By using the Bessel function expansions, explicit solutions for the electromechanical fields induced by a time-harmonic anti-plane line force and line charge located in an unbounded matrix as well as the circular inhomogeneity are respectively derived. The present solutions can recover the anti-plane Green's functions for some special cases, such as the dynamic or quasi-static Green's functions of piezoelectricity with perfect interface as well as the dynamic or quasi-static Green's functions of pure elasticity with imperfect interface. For detailed discussions, selected analytical results are presented. Dependence of the electromechanical fields on circular frequency as well as interface properties is examined. The size effect related to interfacial imperfection is also discussed.  相似文献   

16.
This paper presents a procedure for the derivation of the expressions for electric body force, couple, and power in a nonlinear electroelastic body under electromechanical loads.The derivation is based on Tierseten's two-continuum model but much simplified.  相似文献   

17.
Elastomeric membranes are frequently used in several emerging fields such as soft robotics and flexible electronics. For convenience of the structural design, it is very attractive to find simple analytical solutions to well describe their elastic deformations in response to external loadings. However, both the material/geometrical nonlinearity and the deformation inhomogeneity due to boundary constraints make it much challenging to get an exact analytical solution. In this paper, we focus on the inflation of a prestretched elastomeric circular membrane under uniform pressure, and derive an approximate analytical solution of the pressure–volume curve based upon a reasonable assumption on the shape of the inflated membrane. Such an explicit expression enables us to quantitatively design the material and geometrical parameters of the pre-stretched membrane to generate a target pressure–volume curve with prescribed peak point and initial slope. This work would be of help in the simplified mechanical design of structures involving elastomeric membranes.  相似文献   

18.
The stress and electric fields in electrostrictive materials under general electric loading at infinity are obtained in this paper. It is shown that the pseudo total stresses are continuous in the whole body. The elliptic inhomogeneity problem is first discussed in this paper and its solution is also given. The results show that the stress in the inhomogeneity is not uniform which is different from the solution of Eshelby theory for elastic materials. When the inhomogeneity and matrix have the same dielectric permittivity or the matrix is a non-electrostrictive material, the stress field is uniform in the inhomogeneity. The form of stress function is simple when the inhomogeneity degenerates to a circle.  相似文献   

19.
We investigate a semi-infinite crack penetrating a piezoelectric circular inhomogeneity bonded to an infinite piezoelectric matrix through a linear viscous interface. The tip of the crack is at the center of the circular inhomogeneity. By means of the complex variable and conformal mapping methods, exact closed-form solutions in terms of elementary functions are derived for the following three loading cases: (i) nominal Mode-III stress and electric displacement intensity factors at infinity; (ii) a piezoelectric screw dislocation located in the unbounded matrix; and (iii) a piezoelectric screw dislocation located in the inhomogeneity. The time-dependent electroelastic field in the cracked composite system is obtained. Particularly the time-dependent stress and electric displacement intensity factors at the crack tip, jumps in the displacement and electric potential across the crack surfaces, displacement jump across the viscous interface, and image force acting on the piezoelectric screw dislocation are all derived. It is found that the value of the relaxation (or characteristic) time for this cracked composite system is just twice as that for the same fibrous composite system without crack. Finally, we extend the methods to the more general scenario where a semi-infinite wedge crack is within the inhomogeneity/matrix composite system with a viscous interface.  相似文献   

20.
The problem of multiple piezoelectric circular inclusions, which are perfectly bondedto a piezoelectric matrix, is analyzed in the framework of linear piezoelectricity. Both the matrixand the inclusions are assumed to possess the symmetry of a hexagonal crystal in the 6 mm classand subject to electromechanical loadings (singularities) which produce in-plane electric fieldsand out-of-plane displacement. Based upon the complex variable theory and the method ofsuccessive approximations, the solution of electric field and displacement field either in theinclusions or in the matrix is expressed in terms of explicit series form. Stress and electric fieldconcentrations are studied in detail which are dependent on the mismatch in the materialconstants, the distance between two circular inclusions, and the magnitude of electromechanicalloadings. It is shown that, when the two inclusions approach each other, the oscillatory behaviorof the stress and electric field can be induced in the inclusion as the matrix and the inclusions arepoled in the opposite directions. This important phenomenon can be utilized to build a verysensitive sensor in a piezoelectric composite material system. The present derived solution canalso be applied to the inclusion problem with straight boundaries. The problem associated withthree-material media under electromechanical sources is also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号