首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solvation dynamics of the probe trans-4-(dimethylamino)-4'-cyanostilbene (DCS) have been measured in supercritical fluoroform at 310 K (1.04 Tc) and solvent densities over the range 1.4-2.0 rho(c) using optical Kerr-gated emission spectroscopy. Steady-state measurements and computer simulations of this and the related system coumarin 153 (C153) in fluoroform are used to help interpret the observed dynamics. The solvent contribution to the Stokes shift of DCS is estimated to be 2300 +/- 400 cm(-1) and nearly density independent over the range (0.7-2.0)rho(c). Spectral response functions are bimodal and can be fit to biexponential functions having time constants of approximately 0.5 ps (85%) and 3-10 ps (15%) over the observable range ((1.4-2.0)rho(c)). Computer simulations based on a 2-site model of fluoroform and assuming an electrostatic solvation mechanism appear to properly account for the magnitude and weak density dependence of the Stokes shifts but predict much faster solvation than is observed. Possible reasons for the discrepancy are discussed.  相似文献   

2.
We present a study of local density augmentation around an attractive solute (i.e., giving rise to more attractive interaction with the solvent than solvent-solvent interactions) in supercritical fluoroform. This work is based on molecular dynamics simulations of coumarin 153 in supercritical fluoroform at densities both above and below the critical density, ranging from dilute gas-like to liquid-like, at a reduced temperature (T/T(c)) of 1.03. We focused on studying the structure of the solvation shell and the variation of the solute electronic absorption and emission shifts with density. Quantum calculations at the density functional theory (DFT) level were run on the solute in the ground state, and time-dependent DFT calculations were performed in the solute excited state in order to determine the solute-solvent potential parameters. The results obtained for the Stokes shift are in agreement with the experimental measurements. To evaluate local density augmentation from simulations, we used two different definitions, one based on the solvation number and the other derived from solvatochromic shifts. In the former case, the agreement with experimental results is good, while, in the latter case, better agreement is achieved by perturbatively including the induced-dipole contribution to the solvation energy.  相似文献   

3.
We present here the results of molecular-dynamics simulation of solvation dynamics in supercritical CO(2) at a temperature of about 1.05T(c), where T(c) is the critical temperature, and at a series of densities ranging from 0.4 to 2.0 of the critical density rho(c). We focus on electrostatic solvation dynamics, representing the electronic excitation of the chromophore as a change in its charge distribution from a quadrupolar-symmetry ground state to a dipolar excited state. Two perturbations are considered, corresponding to different magnitudes of solute excited-state dipoles, denoted as d5 and d8. The d8 solute is more attractive, leading to a larger enhancement in CO(2) clustering upon solute electronic excitation. This has a large impact on solvation dynamics, especially at densities below rho(c). At these densities, solvation dynamics is much slower for the d8 than for the d5 solute. For both solutes, solvation dynamics becomes faster at densities above rho(c) at which solvent clustering diminishes. We show that the slowest solvation time scale is associated with solvent clustering and we relate it to solute-solvent mutual translational diffusion and the extent of change in effective local density resulting from solute electronic excitation.  相似文献   

4.
The solvent reorganization process after electronic excitation of a polar solute in a polar solvent such as acetonitrile is related mainly to the time evolution of the solute-solvent electrostatic interaction. Modern laser-based techniques have sufficient time resolution to follow this decay in real time, providing information to be confirmed and interpreted by theories and models. We present here a study aimed at the investigation of the different steps involved in the process taking place after a vertical S(0) --> S(1) excitation of a large size chromophore, coumarin 153 (C153), in acetonitrile, from both the solute and the solvent points of view. To do this, we use accurate quantum mechanical calculations for the solute properties within the polarizable continuum model (PCM) and classical molecular dynamics (MD) simulations, both equilibrium and nonequilibrium, for C153 in the presence of the solvent. The geometry of the solute is allowed to change in order to study the role of internal motions in the time-dependent solvation process. The solvent response function has been obtained from the simulation data and compared to experiment, while the comparison between equilibrium and nonequilibrium MD results for the solvation response confirms the validity of the linear response approximation in the C153-acetonitrile system. The MD trajectories have also been used to monitor the structure of the solvation shell and to determine its change in response to the change in the solute partial charges.  相似文献   

5.
6.
Integrated within an appropriate theoretical framework, molecular dynamics (MD) simulations are a powerful tool to complement experimental studies of solvation dynamics. Together, experiment, theory, and simulation have provided substantial insight into the dynamic behavior of polar solvents. MD investigations of solvation dynamics are especially valuable when applied to the heterogeneous environments found in biological systems, where the calculated response of the environment to the electrostatic perturbation of the probe molecule can easily be decomposed by component (e.g., aqueous solvent, biomolecule, ions), greatly aiding the molecular-level interpretation of experiments. A comprehensive equilibrium and nonequilibrium MD study of the solvation dynamics of the fluorescent dye Hoechst 33258 (H33258) in aqueous solution is presented. Many fluorescent probes employed in experimental studies of solvation dynamics in biological systems, such as the DNA minor groove binder H33258, have inherently more conformational flexibility than prototypical fused-ring chromophores. The role of solute flexibility was investigated by developing a fully flexible force-field for the H33258 molecule and by simulating its solvation response. While the timescales for the total solvation response calculated using both rigid (0.16 and 1.3 ps) and flexible (0.17 and 1.4 ps) models of the probe closely matched the experimentally measured solvation response (0.2 and 1.2 ps), there were subtle differences in the response profiles, including the presence of significant oscillations for the flexible probe. A decomposition of the total response of the flexible probe revealed that the aqueous solvent was responsible for the overall decay, while the oscillations result from fluctuations in the electrostatic terms in the solute intramolecular potential energy. A comparison of equilibrium and nonequilibrium approaches for the calculation of the solvation response confirmed that the solvation dynamics of H33258 in water is well-described by linear response theory for both rigid and flexible models of the probe.  相似文献   

7.
The molecular dynamics (MD) simulation study of solvation structure and free energetics in 1-ethyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium hexafluorophosphate using a probe solute in the preceding article [Y. Shim, M. Y. Choi and H. J. Kim, J. Chem. Phys. 122, 044510 (2005)] is extended to investigate dynamic properties of these liquids. Solvent fluctuation dynamics near equilibrium are studied via MD and associated time-dependent friction is analyzed via the generalized Langevin equation. Nonequilibrium solvent relaxation following an instantaneous change in the solute charge distribution and accompanying solvent structure reorganization are also investigated. Both equilibrium and nonequilibrium solvation dynamics are characterized by at least two vastly different time scales--a subpicosecond inertial regime followed by a slow diffusive regime. Solvent regions contributing to the subpicosecond nonequilibrium relaxation are found to vary significantly with initial solvation configurations, especially near the solute. If the solvent density near the solute is sufficiently high at the outset of the relaxation, subpicosecond dynamics are mainly governed by the motions of a few ions close to the solute. By contrast, in the case of a low local density, solvent ions located not only close to but also relatively far from the solute participate in the subpicosecond relaxation. Despite this difference, linear response holds reasonably well in both ionic liquids.  相似文献   

8.
Solvation in supercritical water under equilibrium and nonequilibrium conditions is studied via molecular dynamics simulations. The influence of solute charge distributions and solvent density on the solvation structures and dynamics is examined with a diatomic probe solute molecule. It is found that the solvation structure varies dramatically with the solute dipole moment, especially in low-density water, in accord with many previous studies on ion solvation. This electrostrictive effect has important consequences for solvation dynamics. In the case of a nonequilibrium solvent relaxation, if there are sufficiently many water molecules close to the solute at the outset of the relaxation, the solvent response measured as a dynamic Stokes shift is almost completely governed by inertial rotations of these water molecules. By contrast, in the opposite case of a low local solvent density near the solute, not only rotations but also translations of water molecules play an important role in solvent relaxation dynamics. The applicability of a linear response is found to be significantly restricted at low water densities.  相似文献   

9.
In exploring the effects of solvent density on the mode and the degree of solvation of the bare and passivated 38-atom gold particle in supercritical ethane, we have extended the molecular dynamics simulations of the system, reported previously,(34) to cover a range of isotherms in the T > T(c) regime, where T(c) is the critical temperature of the solvent. Consonant with our previous observations, the modes of solvation of the bare and the passivated particle, deduced from the radial distribution of the solvent about the metal core center of mass, are found to be vastly different from each other at all solvent densities: while the molecules solvating the bare particle form a well-defined, two-region layer around it, those solvating the passivated particle are loosely dispersed in the passivating layer. For the bare particle, the degree of solvation (vartheta) as a function of solvent density passes through a maximum occurring in the close vicinity of the critical point, consistent with our previous results and in agreement with Debenedetti's theoretical analysis,(22,23) which predicts a solvation enhancement effect in the critical region for systems where the unlike solvent/solute interaction is much stronger than the solvent/solvent interaction. Taking the degree of solvation (vartheta) as a measure of solvent quality, we have investigated how the solvent quality would vary along the solvent-density isotherms. In the solvent-density regime rho > rho(c), the solvent quality is found to be a decreasing function of the density as a result of progressive dominance of the excluded volume effect over the attractive particle/solvent interactions. The particle/solvent affinity is greatly reduced in the presence of the passivating layer, resulting in considerable shrinkage of the good-solvent-quality domain in the supercritical regime. The solvent environment and the presence of the passivating chains produce significant disorder in the equilibrium structure assumed by the nanoparticle core.  相似文献   

10.
11.
Resonant-pump polarizability response spectroscopy (RP-PORS) is based on an optical heterodyne detected transient grating (OHD-TG) method with an additional resonant pump pulse. In RP-PORS, the resonant pump pulse excites the solute-solvent system and the subsequent relaxation of the solute-solvent system is monitored by the OHD-TG spectroscopy. RP-PORS is shown to be an excellent experimental tool to directly measure the solvent responses in solvation. In the present work, we extended our previous RP-PORS (Park et al., Phys. Chem. Chem. Phys., 2011, 13, 214-223) to measure time-dependent transient solvation polarizability (TSP) spectra with Coumarin153 (C153) in acetonitrile. The time-dependent TSP spectra showed how the different solvent intermolecular modes were involved in different stages of the solvation process. Most importantly, the inertial and diffusive components of the solvent intermolecular modes in solvation were found to be spectrally and temporally well-separated. In a dipolar solvation of C153, high-frequency inertial solvent modes were found to be driven instantaneously and decay on a subpicosecond timescale while low-frequency diffusive solvent modes were induced slowly and decayed on a picosecond timescale. Our present result is the first experimental manifestation of frequency-dependent solvent intermolecular response in a dipolar solvation.  相似文献   

12.
We perform a theoretical study of electronic spectroscopy of dilute NO in supercritical Ar fluid. Absorption and emission lineshapes for the A(2)Sigma(+)<--X(2)Pi Rydberg transition of NO in argon have been previously measured and simulated, which yielded results for the NO/Ar ground- and excited-state pair potentials [Larregaray et al., Chem. Phys. 308, 13 (2005)]. Using these potentials, we have performed molecular dynamics simulations and theoretical statistical mechanical calculations of absorption and emission lineshapes and nonequilibrium solvation correlation functions for a wide range of solvent densities and temperatures. Theory was shown to be in good agreement with simulation. Linear response treatment of solvation dynamics was shown to break down at near-critical temperature due to dramatic change in the solute-solvent microstructure upon solute excitation to the Rydberg state and the concomitant increase of the solute size.  相似文献   

13.
Together, spectroscopy combined with computational studies that relate directly to the experimental measurements have the potential to provide unprecedented insight into the dynamics of important biological processes. Recent time-resolved fluorescence experiments have shown that the time scales for collective reorganization at the interface of proteins and DNA with water are more than an order of magnitude slower than in bulk aqueous solution. The molecular interpretation of this change in the collective response is somewhat controversial some attribute the slower reorganization to dramatically retarded water motion, while others describe rapid water dynamics combined with a slower biomolecular response. To connect directly to solvation dynamics experiments of the fluorescent probe Hoechst 33258 (H33258) bound to DNA, we have generated 770 ns of molecular dynamics (MD) simulations and calculated the equilibrium and nonequilibrium solvation response to excitation of the probe. The calculated time scales for the solvation response of H33258 free in solution (0.17 and 1.4 ps) and bound to DNA (1.5 and 20 ps) are highly consistent with experiment (0.2 and 1.2 ps, 1.4 and 19 ps, respectively). Decomposition of the calculated response revealed that water solvating the probe bound to DNA was still relatively mobile, only slowing by a factor of 2-3, while DNA motion was responsible for the long-time component (approximately 20 ps).  相似文献   

14.
采用根据连续介质理论和热力学约束平衡态方法得到的非平衡态溶剂化理论,在单球孔穴点偶极模型近似下推导得出了吸收光谱移动的解析公式.用含时密度泛函方法,在B3LYP/cc-pVDZ水平下研究了对硝基苯胺在水溶液中最低的π→π^*跃迁的吸收光谱,利用新的溶剂化光谱移动公式,得到了与实验值-0.98eV符合很好的光谱移动值一0.99eV.  相似文献   

15.
Solvent clustering around attractive solutes is an important feature of supercritical solvation. We examine here the effects of the local density enhancement on solvatochromic shifts in electronic absorption and emission spectra in supercritical CO2. We use molecular dynamics (MD) simulation to study the spectral line shifts for model diatomic solutes that become more polar upon electronic excitation. The electronic transition is modeled as either a change from a quadrupolar to a dipolar solute charge distribution or as an increase in the magnitude of the solute dipole. Our main focus is on the density dependence of the line shifts at 320 K, which corresponds to about 1.05 times the solvent critical temperature, Tc, but results for higher temperatures are also obtained in order to determine the behavior of the line shifts in the absence of local density enhancement. We find that the extent of local density enhancement at 1.05Tc is strongly correlated with solute-solvent electrostatic attraction and that the density dependence of the emission line shifts resembles the behavior of the effective local densities, rho(eff), obtained from the first-shell coordination numbers. The differences that are seen are shown to be due to solute-solvent orientational correlations which provide an additional source of enhancement for electrostatic solvation energies and spectral line shifts.  相似文献   

16.
Equilibrium and nonequilibrium molecular dynamics (MD) simulations have been performed in both isochoric-isothermal (NVT) and isobaric-isothermal (NPT) ensemble systems. Under steady state shearing conditions, thermodynamic states and rheological properties of liquid n-hexadecane molecules have been studied. Between equilibrium and nonequilibrium states, it is important to understand how shear rates (gamma) affect the thermodynamic state variables of temperature, pressure, and density. At lower shear rates of gamma<1 x 10(11) s(-1), the relationships between the thermodynamic variables at nonequilibrium states closely approximate those at equilibrium states, namely, the liquid is very near its Newtonian fluid regime. Conversely, at extreme shear rates of gamma>1 x 10(11) s(-1), specific behavior of shear dilatancy is observed in the variations of nonequilibrium thermodynamic states. Significantly, by analyzing the effects of changes in temperature, pressure, and density on shear flow system, we report a variety of rheological properties including the shear thinning relationship between viscosity and shear rate, zero-shear-rate viscosity, rotational relaxation time, and critical shear rate. In addition, the flow activation energy and the pressure-viscosity coefficient determined through Arrhenius and Barus equations acceptably agree with the related experimental and MD simulation results.  相似文献   

17.
We report molecular dynamics (MD) simulations of the solvation dynamics of Coumarin 153 in liquid dimethylsulfoxide using two distinct sets of partial charges for the coumarin probe. The excited state dipole moment of the coumarin and the dynamic Stokes shift in solution depend significantly on the type of charge distributions used. Nevertheless, the overall characteristics of the solvation responses obtained from both sets of charges are very similar and show good agreement with time-dependent Stokes shift experiments. Microscopic details of the solvent reorganization around the probe are discussed in light of the charge transfer upon photoexcitation.  相似文献   

18.
Solvation dynamics in four imidazolium cation based room temperature ionic liquids (RTIL) have been calculated by using the recently measured dielectric relaxation data [ J. Phys. Chem. B 2008, 112, 4854 ] as an input in a molecular hydrodynamic theory developed earlier for studying solvation energy relaxation in polar solvents. Coumarin 153 (C153), 4-aminophthalimide (4-AP), and trans-4-dimethylamino-4'-cyanostilbene (DCS) have been used as probe molecules for this purpose. The medium response to a laser-excited probe molecule in an ionic liquid is approximated by that in an effective dipolar medium. The calculated decays of the solvent response function for these RTILs have been found to be biphasic and the decay time constants agree well with the available experimental and computer simulation results. Also, no probe dependence has been found for the average solvation times in these ionic liquids. In addition, dipolar solvation dynamics have been predicted for two other RTILs for which experimental results are not available yet. These predictions should be tested against experiments and/or simulation studies.  相似文献   

19.
Donor-substituted triarylboranes are investigated by femtosecond absorption spectroscopy to study the influence of molecular symmetry on solvation. In solvents of varying polarity and differently fast solvation response, the solvation dynamics of a highly symmetric triple carbazole-substituted triarylborane (TCB) is compared to a single carbazole-substituted triarylborane (CB). The decomposition of the transient absorption spectra allows us to measure the solvation time by means of the time-dependent solvatochromic shift of the excited-state absorption (ESA) and the stimulated emission (SE). For all polar solvents under study we find an accelerated solvation process for TCB compared to the less symmetric CB. The difference is particularly large for solvents with a slow response. In order to explain these findings we propose that the electronic excitation is mobile in the symmetric molecule and can change between the three carbazole chromophores probably by a hopping mechanism. The excited-state dipole moment of TCB can thereby respond to the solvent relaxation and changes its direction according to the local field of the solvation shell. Thus, in a symmetric solute the possibility of an intramolecular charge delocalization over equivalent sites accelerates the approach of the minimum-energy configuration.  相似文献   

20.
We report applications of analytical formalisms and molecular dynamics (MD) simulations to the calculation of redox entropy of plastocyanin metalloprotein in aqueous solution. The goal of our analysis is to establish critical components of the theory required to describe polar solvation at the mesoscopic scale. The analytical techniques include a microscopic formalism based on structure factors of the solvent dipolar orientations and density and continuum dielectric theories. The microscopic theory employs the atomistic structure of the protein with force-field atomic charges and solvent structure factors obtained from separate MD simulations of the homogeneous solvent. The MD simulations provide linear response solvation free energies and reorganization energies of electron transfer in the temperature range of 280-310 K. We found that continuum models universally underestimate solvation entropies, and a more favorable agreement is reported between the microscopic calculations and MD simulations. The analysis of simulations also suggests that difficulties of extending standard formalisms to protein solvation are related to the inhomogeneous structure of the solvation shell at the protein-water interface combining islands of highly structured water around ionized residues along with partial dewetting of hydrophobic patches. Quantitative theories of electrostatic protein hydration need to incorporate realistic density profile of water at the protein-water interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号