首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this paper, we discuss the solution of linear and quadratic eigenvalue complementarity problems (EiCPs) using an enumerative algorithm of the type introduced by Júdice et al. (Optim. Methods Softw. 24:549–586, 2009). Procedures for computing the interval that contains all the eigenvalues of the linear EiCP are first presented. A nonlinear programming (NLP) model for the quadratic EiCP is formulated next, and a necessary and sufficient condition for a stationary point of the NLP to be a solution of the quadratic EiCP is established. An extension of the enumerative algorithm for the quadratic EiCP is also developed, which solves this problem by computing a global minimum for the NLP formulation. Some computational experience is presented to highlight the efficiency and efficacy of the proposed enumerative algorithm for solving linear and quadratic EiCPs.  相似文献   

2.
In this paper an eigenvalue complementarity problem (EiCP) is studied, which finds its origins in the solution of a contact problem in mechanics. The EiCP is shown to be equivalent to a Nonlinear Complementarity Problem, a Mathematical Programming Problem with Complementarity Constraints and a Global Optimization Problem. A finite Reformulation–Linearization Technique (Rlt)-based tree search algorithm is introduced for processing the EiCP via the lattermost of these formulations. Computational experience is included to highlight the efficacy of the above formulations and corresponding techniques for the solution of the EiCP.  相似文献   

3.
In this paper, an inverse complementarity power iteration method (ICPIM) for solving eigenvalue complementarity problems (EiCPs) is proposed. Previously, the complementarity power iteration method (CPIM) for solving EiCPs was designed based on the projection onto the convex cone K. In the new algorithm, a strongly monotone linear complementarity problem over the convex cone K is needed to be solved at each iteration. It is shown that, for the symmetric EiCPs, the CPIM can be interpreted as the well‐known conditional gradient method, which requires only linear optimization steps over a well‐suited domain. Moreover, the ICPIM is closely related to the successive quadratic programming (SQP) via renormalization of iterates. The global convergence of these two algorithms is established by defining two nonnegative merit functions with zero global minimum on the solution set of the symmetric EiCP. Finally, some numerical simulations are included to evaluate the efficiency of the proposed algorithms.  相似文献   

4.
For the nonlinear complementarity problem (NCP), Chen et al. (Math. Program., 88:211–216, 2000) proposed a penalized Fischer-Burmeister (FB) function that has most desirable properties among complementarity functions (C-functions). Motivated by their work, the authors showed (Kum and Lim in Penalized Complementarity Functions on Symmetric Cones, submitted, 2009) that this function naturally extends to a C-function for the symmetric cone complementarity problem (SCCP). In this note, we show that the main coercivity property of this function for NCP also extends to the SCCP. The proof uses a new trace inequality on Euclidean Jordan algebras. We also show that the penalized FB function is strongly semismooth in the case of a semidefinite cone and a second-order cone. This work was supported by the Korea Research Foundation Grant KRF-2008-314-C00039.  相似文献   

5.
The Quadratic Eigenvalue Complementarity Problem (QEiCP) is an extension of the Eigenvalue Complementarity Problem (EiCP) that has been introduced recently. Similar to the EiCP, the QEiCP always has a solution under reasonable hypotheses on the matrices included in its definition. This has been established in a previous paper by reducing a QEiCP of dimension n to a special 2n-order EiCP. In this paper we propose an enumerative algorithm for solving the QEiCP by exploiting this equivalence with an EiCP. The algorithm seeks a global minimum of a special Nonlinear Programming Problem (NLP) with a known global optimal value. The algorithm is shown to perform very well in practice but in some cases terminates with only an approximate optimal solution to NLP. Hence, we propose a hybrid method that combines the enumerative method with a fast and local semi-smooth method to overcome the latter drawback. This algorithm is also shown to be useful for computing a positive eigenvalue for an EiCP under similar assumptions. Computational experience is reported to demonstrate the efficacy and efficiency of the hybrid enumerative method for solving the QEiCP.  相似文献   

6.
In this paper the Eigenvalue Complementarity Problem (EiCP) with real symmetric matrices is addressed. It is shown that the symmetric (EiCP) is equivalent to finding an equilibrium solution of a differentiable optimization problem in a compact set. A necessary and sufficient condition for solvability is obtained which, when verified, gives a convenient starting point for any gradient-ascent local optimization method to converge to a solution of the (EiCP). It is further shown that similar results apply to the Symmetric Generalized Eigenvalue Complementarity Problem (GEiCP). Computational tests show that these reformulations improve the speed and robustness of the solution methods.

  相似文献   


7.
We establish that the Fischer–Burmeister (FB) complementarity function and the natural residual (NR) complementarity function associated with the symmetric cone have the same growth, in terms of the classification of Euclidean Jordan algebras. This, on the one hand, provides an affirmative answer to the second open question proposed by Tseng (J Optim Theory Appl 89:17–37, 1996) for the matrix-valued FB and NR complementarity functions, and on the other hand, extends the third important inequality of Lemma 3.1 in the aforementioned paper to the setting of Euclidean Jordan algebras. It is worthwhile to point out that the proof is surprisingly simple.  相似文献   

8.
This paper is devoted to the study of the proximal point algorithm for solving monotone second-order cone complementarity problems. The proximal point algorithm is to generate a sequence by solving subproblems that are regularizations of the original problem. After given an appropriate criterion for approximate solutions of subproblems by adopting a merit function, the proximal point algorithm is verified to have global and superlinear convergence properties. For the purpose of solving the subproblems efficiently, we introduce a generalized Newton method and show that only one Newton step is eventually needed to obtain a desired approximate solution that approximately satisfies the appropriate criterion under mild conditions. Numerical comparisons are also made with the derivative-free descent method used by Pan and Chen (Optimization 59:1173–1197, 2010), which confirm the theoretical results and the effectiveness of the algorithm.  相似文献   

9.
For the symmetric cone complementarity problem, we show that each stationary point of the unconstrained minimization reformulation based on the Fischer-Burmeister merit function is a solution to the problem, provided that the gradient operators of the mappings involved in the problem satisfy column monotonicity or have the Cartesian P0-property. These results answer the open question proposed in the article that appeared in Journal of Mathematical Analysis and Applications 355 (2009) 195-215.  相似文献   

10.
The nonmonotone linear complementarity problem (LCP) is formulated as a bilinear program with separable constraints and an objective function that minimizes a natural error residual for the LCP. A linear-programming-based algorithm applied to the bilinear program terminates in a finite number of steps at a solution or stationary point of the problem. The bilinear algorithm solved 80 consecutive cases of the LCP formulation of the knapsack feasibility problem ranging in size between 10 and 3000, with almost constant average number of major iterations equal to four.This material is based on research supported by Air Force Office of Scientific Research Grant F49620-94-1-0036 and National Science Foundation Grants CCR-9322479 and CDA-9024618.  相似文献   

11.
The symmetric cone complementarity problem (denoted by SCCP) is a broad class of optimization problems, which contains the semidefinite complementarity problem, the second-order cone complementarity problem, and the nonlinear complementarity problem. In this paper we first extend the smoothing function proposed by Huang et al. (Sci. China 44:1107–1114, 2001) for the nonlinear complementarity problem to the context of symmetric cones and show that it is coercive under suitable assumptions. Based on this smoothing function, a smoothing-type algorithm, which is a modified version of the Qi-Sun-Zhou method (Qi et al. in Math. Program. 87:1–35, 2000), is proposed for solving the SCCP. By using the theory of Euclidean Jordan algebras, we prove that the proposed algorithm is globally and locally quadratically convergent under suitable assumptions. Preliminary numerical results for some second-order cone complementarity problems are reported which indicate that the proposed algorithm is effective.  相似文献   

12.
We present an interior-point method for monotone linear complementarity problems over symmetric cones (SCLCP) that is based on barrier functions which are defined by a large class of univariate functions, called eligible kernel functions. This class is fairly general and includes the classical logarithmic function, the self-regular functions, as well as many non-self-regular functions as special cases. We provide a unified analysis of the method and give a general scheme on how to calculate the iteration bounds for the entire class. We also calculate the iteration bounds of both large-step and short-step versions of the method for ten frequently used eligible kernel functions. For some of them we match the best known iteration bound for large-step methods, while for short-step methods the best iteration bound is matched for all cases. The paper generalizes results of Lesaja and Roos (SIAM J. Optim. 20(6):3014–3039, 2010) from P (κ)-LCP over the non-negative orthant to monotone LCPs over symmetric cones.  相似文献   

13.
Misclassification minimization   总被引:1,自引:0,他引:1  
The problem of minimizing the number of misclassified points by a plane, attempting to separate two point sets with intersecting convex hulls inn-dimensional real space, is formulated as a linear program with equilibrium constraints (LPEC). This general LPEC can be converted to an exact penalty problem with a quadratic objective and linear constraints. A Frank-Wolfe-type algorithm is proposed for the penalty problem that terminates at a stationary point or a global solution. Novel aspects of the approach include: (i) A linear complementarity formulation of the step function that counts misclassifications, (ii) Exact penalty formulation without boundedness, nondegeneracy or constraint qualification assumptions, (iii) An exact solution extraction from the sequence of minimizers of the penalty function for a finite value of the penalty parameter for the general LPEC and an explicitly exact solution for the LPEC with uncoupled constraints, and (iv) A parametric quadratic programming formulation of the LPEC associated with the misclassification minimization problem.This material is based on research supported by Air Force Office of Scientific Research Grant F49620-94-1-0036 and National Science Foundation Grants CCR-9101801 and CDA-9024618.  相似文献   

14.
The problem of minimizing the rank of a symmetric positive semidefinite matrix subject to constraints can be cast equivalently as a semidefinite program with complementarity constraints (SDCMPCC). The formulation requires two positive semidefinite matrices to be complementary. This is a continuous and nonconvex reformulation of the rank minimization problem. We investigate calmness of locally optimal solutions to the SDCMPCC formulation and hence show that any locally optimal solution is a KKT point. We develop a penalty formulation of the problem. We present calmness results for locally optimal solutions to the penalty formulation. We also develop a proximal alternating linearized minimization (PALM) scheme for the penalty formulation, and investigate the incorporation of a momentum term into the algorithm. Computational results are presented.  相似文献   

15.
A unified treatment is given for iterative algorithms for the solution of the symmetric linear complementarity problem: $$Mx + q \geqslant 0, x \geqslant 0, x^T (Mx + q) = 0$$ , whereM is a givenn×n symmetric real matrix andq is a givenn×1 vector. A general algorithm is proposed in which relaxation may be performed both before and after projection on the nonnegative orthant. The algorithm includes, as special cases, extensions of the Jacobi, Gauss-Seidel, and nonsymmetric and symmetric successive over-relaxation methods for solving the symmetric linear complementarity problem. It is shown first that any accumulation point of the iterates generated by the general algorithm solves the linear complementarity problem. It is then shown that a class of matrices, for which the existence of an accumulation point that solves the linear complementarity problem is guaranteed, includes symmetric copositive plus matrices which satisfy a qualification of the type: $$Mx + q > 0 for some x in R^n $$ . Also included are symmetric positive-semidefinite matrices satisfying this qualification, symmetric, strictly copositive matrices, and symmetric positive matrices. Furthermore, whenM is symmetric, copositive plus, and has nonzero principal subdeterminants, it is shown that the entire sequence of iterates converges to a solution of the linear complementarity problem.  相似文献   

16.
New Constrained Optimization Reformulation of Complementarity Problems   总被引:3,自引:0,他引:3  
We suggest a reformulation of the complementarity problem CP(F) as a minimization problem with nonnegativity constraints. This reformulation is based on a particular unconstrained minimization reformulation of CP(F) introduced by Geiger and Kanzow as well as Facchinei and Soares. This allows us to use nonnegativity constraints for all the variables or only a subset of the variables on which the function F depends. Appropriate regularity conditions ensure that a stationary point of the new reformulation is a solution of the complementarity problem. In particular, stationary points with negative components can be avoided in contrast to the reformulation as unconstrained minimization problem. This advantage will be demonstrated for a class of complementarity problems which arise when the Karush–Kuhn–Tucker conditions of a convex inequality constrained optimization problem are considered.  相似文献   

17.
The Markov–Bernstein inequalities for the Jacobi measure remained to be studied in detail. Indeed the tools used for obtaining lower and upper bounds of the constant which appear in these inequalities, did not work, since it is linked with the smallest eigenvalue of a five diagonal positive definite symmetric matrix. The aim of this paper is to generalize the qd algorithm for positive definite symmetric band matrices and to give the mean to expand the determinant of a five diagonal symmetric matrix. After that these new tools are applied to the problem to produce effective lower and upper bounds of the Markov–Bernstein constant in the Jacobi case. In the last part we com pare, in the particular case of the Gegenbauer measure, the lower and upper bounds which can be deduced from this paper, with those given in Draux and Elhami (Comput J Appl Math 106:203–243, 1999) and Draux (Numer Algor 24:31–58, 2000).   相似文献   

18.
This paper considers a class of stochastic linear complementarity problems (SLCPs) with finitely many realizations. We first formulate this class of SLCPs as a minimization problem. Then, a partial projected Newton method, which yields a stationary point of the minimization problem, is presented. The global and quadratic convergence of the proposed method is proved under certain assumptions. Preliminary experiments show that the algorithm is efficient and the formulation may yield a solution with various desirable properties.  相似文献   

19.
A reformulation of the nonlinear complementarity problem (NCP) as an unconstrained minimization problem is considered. It is shown that any stationary point of the unconstrained objective function is a solution of NCP if the mapping F involved in NCP is continuously differentiable and monotone, and that the level sets are bounded if F is continuous and strongly monotone. A descent algorithm is described which uses only function values of F. Some numerical results are given.  相似文献   

20.
The nonlinear complementarity problem can be reformulated as unconstrained minimization problems by introducing merit functions. Under some assumptions, the solution set of the nonlinear complementarity problem coincides with the set of local minima of the corresponding minimization problem. These results were presented by Mangasarian and Solodov, Yamashita and Fukushima, and Geiger and Kanzow. In this note, we generalize some results of Mangasarian and Solodov, Yamashita and Fukushima, and Geiger and Kanzow to the case where the considered function is only directionally differentiable. Some results are strengthened in the smooth case. For example, it is shown that the strong monotonicity condition can be replaced by the P-uniform property for ensuring a stationary point of the reformulated unconstrained minimization problems to be a solution of the nonlinear complementarity problem. We also present a descent algorithm for solving the nonlinear complementarity problem in the smooth case. Any accumulation point generated by this algorithm is proved to be a solution of the nonlinear complementarity under the monotonicity condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号