首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The formation and the properties of wormlike micelles in aqueous solutions of mixed cationic and anionic gemini surfactants, 2-hydroxyl-propanediyl-α,ω-bis(dimethyldodecylammonium bromide) (12-3(OH)-12) and O,O'-bis(sodium 2-dodecylcarboxylate)-p-benzenediol (C(12)?C(12)), have been studied by steady-state and dynamic rheological measurements at 25°C. With the addition of a small amount of C(12)?C(12) into the solution of 12-3(OH)-12, the total surfactant concentration of which was always kept at 80 mmol L(-1), the solution viscosity was strongly enhanced and its maximum was much larger than that of the mixed system of propanediyl-α,ω-bis(dimethyldodecylammonium bromide) (12-3-12) and C(12)?C(12). The results of dynamic rheology measurements showed that 12-3(OH)-12/C(12)?C(12) formed longer wormlike micelles in comparison with 12-3-12/C(12)?C(12). This was attributed to the effect of hydrogen bonding occurring between 12-3(OH)-12 molecules, which was an effective driving force promoting micellar growth. As few C(12)?C(12) participated in the micelles, the electrostatic attraction between the oppositely charged head groups of 12-3(OH)-12 and C(12)?C(12) made the molecules in the aggregates pack more tightly. This reinforced the hydrogen-bonding interactions and greatly promoted the micellar growth.  相似文献   

2.
Mixed micellization of dimeric cationic surfactants tetramethylene-1,4-bis(hexadecyldimethylammonium bromide)(16-4-16), hexamethylene-1,6-bis(hexadecyldimethylammonium bromide) (16-6-16) with monomeric cationic surfactants hexadecyltrimethylammonium bromide (CTAB), cetylpyridinium bromide (CPB), cetylpyridinium chloride (CPC), and tetradecyltrimethylammonium bromide (TTAB) have been studied by conductivity and steady-state fluorescence quenching techniques. The behavior of mixed systems, their compositions, and activities of the components have been analyzed in the light of Rubingh's regular solution theory. The results indicate synergism in the binary mixtures. Ideal and experimental critical micelle concentrations (i.e., cmc(*) and cmc) show nonideality, which is confirmed by beta values and activity coefficients. The micelle aggregation numbers (N(agg)), evaluated using steady-state fluorescence quenching at a total concentration of 2 mM for CTAB/16-4-16 or 16-6-16 and 5 mM for TTAB/16-4-16 or 16-6-16 systems, indicate that the contribution of conventional surfactants was always more than that of the geminis. The micropolarity, dielectric constant and binding constants (K(sv)) of mixed systems have also been evaluated from the ratios of respective peak intensities (I(1)/I(3) or I(0)/I(1)).  相似文献   

3.
Pyrene fluorescence and Krafft temperature measurements have been carried out for various combinations of cationic gemini (m-2-m) with zwitterionic surfactants by changing the length of the hydrophobic tail over the whole mixing range. The results have been evaluated by using the regular solution theory. All the mixtures of cationic gemini+zwitterionic surfactants indicate the presence of synergistic interactions which largely decrease at higher hydrophobicity of both components. A greater amount of gemini component in the mixed micelles induces stronger synergism which reduces with the increase in the length of hydrophobic tail of the gemini component. The Krafft temperature measurements also indicate the presence of strong synergistic interactions, which decrease with increase in the length of hydrophobic tail of both components.  相似文献   

4.
Mixed micelle formation of binary cationic gemini (12-s-12, s=4, 6) and zwitterionic (N-dodecyl-N,N-dimethylglycine, EBB) surfactants has been investigated by measuring the surface tension of aqueous solution as a function of total concentration at various pH values from acidic to basic, under conditions of 298.15 K and atmospheric pressure. The results were analyzed by applying regular solution theory (RST), and Motomura's theory, which allows for the calculation of the excess Gibbs energy of micellization purely on the basis of thermodynamic equations. The synergistic interactions of all the investigated cationic gemini + zwitterionic surfactants mixtures were found to be dependent upon the pH of the solution and the length of hydrophobic spacer of gemini surfactant. The evaluated excess Gibbs free energy is negative for all the systems.  相似文献   

5.
The mixed adsorption of a cationic gemini surfactant, ethanediyl-1,2-bis(dodecyldimethylammonium bromide) (abbreviated as 12-2-12), and an anionic conventional surfactant, sodium dodecyl sulfate (SDS), was examined using surface tension measurements. The viscoelastic properties of the mixed films were investigated by dilational interfacial rheology technique. The results showed that the addition of SDS promoted the close packing of adsorbed molecules at the interface, which increased the dilational elasticity of the mixed films. The stability of the foams was determined by the half-life of foam height collapse. The foams generated by 12-2-12/SDS mixtures were more stable than that formed by pure 12-2-12. In the presence of sodium bromide, the foam stability was further enhanced and the surfactant concentration required to attain the maximum effect in stabilizing foams was greatly reduced. The high foam stability could well relate to the high elasticity of the film.  相似文献   

6.
Cyclic voltammetry has been employed to investigate the mixed micellar behavior of the binary mixtures of different zwitterionic surfactants such as 3-(N,N-dimethylhexadecylammonio)propane sulfonate (HPS), 3-(N,N-dimethyltetradecylammonio)propane sulfonate (TPS) and 3-(N,N-dimethyldodecylammonio)propane sulfonate (DPS) with three triblock polymers (L64, F127 and P65) by using 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as an electroactive probe at 25 °C. Critical micellar concentration (cmc) has been determined from the plots of variation in peak current (ip) versus the total concentration of surfactant/triblock polymer. Diffusion coefficient of the electroactive species has also been reported. The regular solution theory approximation has been used to determine various micellar parameters of ideal systems. The variation in micellar mole fraction (X1) of the zwitterionic surfactant supports the formation of mixed micelles, which are rich in triblock polymer component in the surfactant rich region of the mixture and vice versa. The regular solution interaction parameter (β) suggests the formation of mixed micelles due to the synergistic interactions in case of HPS/TPS/DPS + F127/P65 systems and gets affected by EO/PO ratio of triblock polymers.  相似文献   

7.
The retardation effect of oxygen and external magnetic field on the yield of radicals in hydroperoxide decomposition in catalytic nanoreactors was discovered. Mixed reverse micelles formed by the cationic surfactants (Surf) and hydroperoxide {mLOOH...nSurf} play the role of nanoreactors. Similar effects of oxygen and external magnetic field (60–150 mT) on the yield of radicals are observed in the catalytic decomposition of hydroperoxide in the presence of acetylcholine. It is noteworthy that the retardation effect of the magnetic field decreases in the presence of paramagnetic particles such as oxygen and relatively stable radicals.  相似文献   

8.
The mixed micelles of cationic gemini surfactants C12C(S)C12Br2 (S=3, 6, and 12) with the nonionic surfactant Triton X-100 (TX100) have been studied by steady-state fluorescence, time-resolved fluorescence quenching, electrophoretic light scattering, and electron spin resonance. Both the surfactant composition and the spacer length are found to influence the properties of mixed micelles markedly. The total aggregation number of alkyl chains per micelle (N(T)) goes through a minimum at X(TX100)=0.8. Meanwhile, the micropolarity of the mixed micelles decreases with increasing X(TX100), while the microviscosity increases. The presence of minimum in N(T) is explained in terms of the competition of the reduction of electrostatic repulsion between headgroups of cationic gemini surfactant with the enhancement of steric repulsion between hydrophilic headgroups of TX100 caused by the addition of TX100. The variations of micropolarity and microviscosity indicate that the incorporation of TX100 to the gemini surfactants leads to a more compact and hydrophobic micellar structure. Moreover, for the C12C3C12Br2/TX100 mixed micelle containing C12C3C12Br2 with a shorter spacer, the more pronounced decrease of N(T) at X(TX100) lower than 0.8 may be attributed to the larger steric repulsion between headgroups of TX100. Meanwhile, the increase of microviscosity and the decrease of micropolarity are more marked for the C12C12C12Br2/TX100 mixed micelle, owing to the looped conformation of the longer spacer of C12C12C12Br2.  相似文献   

9.
The forces acting between glass and between mica surfaces in the presence of two cationic gemini surfactants, 1,4 diDDAB (1,4-butyl-bis(dimethyldodecylammonium bromide)) and 1,12 diDDAB (1,12-dodecyl-bis(dimethyldodecylammonium bromide)), have been investigated below the critical micelle concentration (cmc) of the surfactants using two different surface force techniques. In both cases, it was found that a recharging of the surfaces occurred at a surfactant concentration of about 0.1 x cmc, and at all surfactant concentrations investigated repulsive double-layer forces dominated the interaction at large separations. At smaller separations, attractive forces, or regions of separation with (close to) constant force, were observed. This was interpreted as being due to desorption and rearrangement in the adsorbed layer induced by the proximity of a second surface. Analysis of the decay length of the repulsive double-layer force showed that the majority of the gemini surfactants were fully dissociated. However, the degree of ion pair formation, between a gemini surfactant and a bromide counterion, increased with increasing surfactant concentration and was larger for the gemini surfactant with a shorter spacer length.  相似文献   

10.
The dynamic structure of the micelles of gemini (dimeric) alkylammonium surfactants with different lengths of hydrophobic radicals and polymethylene spacer differing in alkyl substituents of the head group and type of counterion are studied by ESR spin probe technique. The use of probes with different localization of spin moiety makes it possible to quantitatively characterize a decrease in micropolarity when going from the surface of micellar aggregates to the core and compare the dynamic structures of the micelles of dimeric and monomeric analogs.  相似文献   

11.
Two types of spermine-based gemini surfactants have been synthesised; structure-activity studies have shown one type to be far superior in gene transection than the other.  相似文献   

12.
The lyotropic phase behavior for the neat cationic gemini surfactants alkanediyl-alpha,omega-bis(alkyldimethylammonium bromide), designated here as m-s-m, has been investigated previously in several works, but the thermotropic behavior has not been well characterized. Only for 15-s-15 and 14-s-12 have thermotropic liquid crystals (Lc) been reported. In this work, for the first time and in contrast to previous reports, we observe thermotropic Lc formation for m-2-m geminis with m = 12, 14, 16, and 18, by means of polarizing microscopy and differential scanning calorimetry (DSC). Furthermore, we investigate mixtures of m-2-m and SDS, m-2-m Br2.2SDS, which exhibit crystal-to-crystal phase transitions at lower temperature and, at high temperature, smectic Lc phases. The transition temperatures and enthalpies for Lc phases, obtained by DSC, present clear trends upon increase of the chain lengths. Combining Langmuir film experiments, possible lamellar arrangements for the different phases are tentatively discussed.  相似文献   

13.
Aqueous mixtures containing a homopolymer, poly(vinylpyrrolidone) (PVP), or a hydrophobically modified graft copolymer, HM-pullulan, (PULAU9, where 9 stands for the nominal substitution degree), and different Gemini surfactants have been investigated at 25.0 degrees C. A wide variety of experimental conditions were addressed by changing the amount of polymer and of surfactant. The Gemini surfactants were synthesized, purified, and characterized by routine methods. They differ from each other in polar head groups (two sulfonate-, two quaternary ammonium-, or two arginine-based groups), in alkyl chain length (11 or 12 carbon atoms), and in the distance between the polar head groups. The spacers consist of 2, 3, and 6 methylene units or 3 oxyethylene units. Surface activity and solution calorimetry measurements yield some physicochemical features inherent to micelle formation and polymer-surfactant interactions. The data are supported by ionic conductivity, detecting the critical thresholds and quantifying the modifications in binding associated with critical association (CAC) and micelle formation (CMC*). The Gibbs energy of transfer from the micelles to a polymer-binding site, DeltaGtrans, was evaluated from the CAC/CMC* ratios versus the amount of added polymer. A similar procedure determined the enthalpy of transfer, DeltaHtrans. DeltaGtrans decreases with added polymer, whereas DeltaHtrans becomes more negative on increasing the amount of polymer in the medium. According to the selected data presented here, cationic Geminis do not interact with PVP, while significant interactions have been observed in other surfactants. In mixtures with PULAU9, the interaction is significant for all Geminis. This effect is due to interactions between the surfactants and the hydrophobic alkyl groups on the main polymer chain. The pendent groups facing away from the polysaccharide chain act as binding sites for aggregates onto such polymers.  相似文献   

14.
The voltammetric behavior of 2-thiouracil at a silver electrode is described. 2-Thiouracil can deposit or chemisorb anodically at silver surface; when the potential is made more negative the deposited 2-thiouracil undergoes reductive desorption-process, yielding a cathodic peak at about −1.2 V (vs. SCE) in basic phosphate buffer solution (pH 10.3). In the presence of cationic gemini surfactant C4H8–1,4-(C16H33N+ (CH3)2Br)2 (C16–C4–C16) the deposition of 2-thiouracil is greatly improved and the cathodic peak is enhanced. Meanwhile, the peak shifts to more negative potential. The role of C16–C4–C16 is thought to combine and coadsorb with 2-thiouracil at silver surface as well as reduce the electrostatic repulse in the deposited film, thus making it more easy to deposit and desorb at more negative potential. With C16–C4–C16 the lateral interaction of deposits reduces, the reductive desorption becomes faster and the cathodic peak becomes sharper. For geminis with different spacer groups and alkyl chains, their influence is mainly determined by their hydrophobicity and adsorbability. It was found that increasing length of alkyl chain was favorable for obtaining a high and sharp desorption peak, whose peak potential is more negative. For comparison, surfactants with single alkyl-chain and double alkyl-chain, such as cetyltrimethyl ammonium bromide and dicetyldimethyl ammonium bromide were studied. They made the desorption peak shift less due to their weaker combination with 2-thiouracil.  相似文献   

15.
Cyclic voltammetric (CV) techniques have been employed to study the mixed micellar behavior of binary mixtures of triblock polymers (TBP) such as F127+P85, F127+P85, F88+P85, and F88+P123 using 2,2,6,6-tetramethyl-1-piperidinyloxy (Tempo) as an electroactive probe. Critical micellar concentration (cmc) has been obtained for pure triblock polymers and their mixed systems from the plots of peak current (ip) variation versus the total concentration. Diffusion coefficients of the electroactive species have been determined from the Randles–Sevcik equation. The interaction parameter (β) for the mixed micelles was obtained from the regular solution theory. The values of β suggest that the synergism does exist especially with the F88+P123 system. Cloud point measurements have also been made on the binary mixtures of triblock polymers following similar mixing criteria. An effort has been made to correlate the micellar behavior and phase separation (cloud point) phenomenon. From the correlation, it can be concluded that in the systems studied, an increase in cmc increases the cloud point of mixed systems of triblock polymers.  相似文献   

16.
In this paper were analyzed the surface properties of surfactants and the miscibility and interactions between components of adsorbed monolayers and micelles formed from mixed systems. The investigated compounds differ in the structure of the polar head and represented cationic (dodecyltrihydroxyethylammonium bromide—DTEAB, dodecyltrimethylammonium bromide DTMAB), anionic (sodium dodecyl sulfate—SDS), and nonionic (dodecyl-β-d-glucoside—DG) surfactant. The experiments were based on the measurements of the surface tension of the aqueous solutions of the investigated compounds and their mixtures (cationic/nonionic—DTEAB/DG, cationic/cationic—DTEAB/DTMAB and cationic/anionic—DTEAB/SDS). The composition of the mixed films and micelles as well as the free energies of mixing values, which are a measure of the molecular interactions, was calculated basing on the equations resulting from the Motomura theory. The obtained results indicate that all the investigated systems mix nonideally both in the monolayers and micelles. The magnitude of the deviations from ideal behavior is strongly dependent on the type of the investigated mixture and increases in the following order: DTEAB/DTMAB < DTEAB/DG  DTEAB/SDS.  相似文献   

17.
Binding of cationic gemini surfactants alkanediyl-a-ω-bis(dimethyldodecylammonium bromides) with variable polymethylene spacer length ranging from 2 to 12 methylene groups to DNA in NaBr solution is investigated utilizing the tensiometry method. A simple method is presented for calculating the number of surfactant molecules bound to DNA. The results are evaluated in terms of the gemini surfactant spacer length, showing that gemini molecules with either short spacers (2 methylene groups) or long spacers are most efficiently adsorbed to DNA. A weak adsorption to DNA was found for gemini molecules with a medium spacer length (6 methylene groups in the spacer). The binding properties of cationic gemini surfactants as a function of spacer length are consistent with the results obtained by other experimental methods (dynamic light scattering measurements, fluorescence spectroscopy), indicating identical adsorption behaviour of gemini molecules as a function of the spacer length.   相似文献   

18.
Novel quaternary ammonium cationic gemini surfactants, with two hydrocarbon chains and an adamantane core, were designed and synthesized by three-step reactions from adamantane. The structure of obtained surfactants were confirmed by 1H NMR, FTIR and elements analysis and the surface properties of these surfactants were also studied by surface tension measurements. These target surfactants exhibit much lower critical micelle concentrations (CMC) and higher efficiency in lowering the surface tension of water than typical surfactants.  相似文献   

19.
Solubilization of two different types of organic dyes, Quinizarin with an anthraquinone structure and Sudan I with an azo structure, has been studied in aqueous solutions of a series of cationic gemini surfactants and of a conventional monomeric cationic surfactant, dodecyltrimethylammonium bromide (DTAB). Surfactant concentrations both above and below the critical micelle concentration were used. The concentration of solubilized dye at equilibrium was determined from the absorbance of the solution at λ(max) with the aid of a calibration curve. The solubilization power of the gemini surfactants was higher than that of DTAB and increased with increasing alkyl chain length. An increase in length of the spacer unit resulted in increased solubilization power while a hydroxyl group in the spacer did not have much effect. Ester bonds in the alkyl chains reduced the solubilization power with respect to both dyes. A comparison between the absorbance spectra of the dyes in micellar solution with spectra in a range of solvents of different polarity indicated that the dye is situated in a relatively polar environment. One may therefore assume that the dye is located just below the head group region of the micelle. Attractive π-cation interactions may play a role for orienting the dye to the outer region of the micelle.  相似文献   

20.
Interaction of tetradecyltrimethylammonium bromide (TTAB), octylophenylpolyoxyethylene ether (TX-100), sodium dodecylsulfate (SDS), N,N′-ditetradecyl-N,N,N′,N′-tetramethyl-N,N′-butanediyl-diammonium dibromide (14,4,14) and N,N′-didodecyl-N,N,N′,N′-tetramethyl-N,N′-butanediyl-diammonium dibromide (12,4,12) with an anionic diazo dye, Congo Red, was investigated using conductometry, spectroscopy, tensiometry, and pulsed field gradient NMR (PFG-NMR). The formation of dye-surfactant ion pairs, their small mixed aggregates (below the critical micelle concentration (CMC) of these surfactants) and surfactant micelles were detected successfully. Above the CMC, the dye reverted to its monomeric state and solubilized in the micelles. Job's method was used to determine the stoichiometric ratio of dye and surfactant in ion pairs and revealed the formation of more hydrophile ion pairs for geminis compared to their conventional analogs. Quantitative results obtained from tensiometry indicated the existence of considerable synergism for cationic surfactants and antagonism for anionic SDS. In addition, the synergism observed for TX-100 revealed the effect of π-π stacking and hydrophobic forces on ion pair and mixed micelle formation. The increase of dye-surfactant interactions by increasing the electrical charge and chain length of cationic surfactants confirmed the importance of both electrostatic and hydrophobic forces in binary dye/surfactant systems. The hydrodynamic radii of the micelles were determined by self-diffusion coefficient measurements. The average size of the cationic and nonionic micelles increased in the presence of CR molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号