首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Composites made of semi-crystalline polymers and nanoparticles have a spherulitic microstructure which can be reasonably represented by a spherically anisotropic volume element. Due to the high surface-to-volume ratio of a nanoparticle, the particle-matrix interface stress, usually neglected in determining the effective elastic moduli of particle-reinforced composites, may have a non-negligible effect. To account for the latter in estimating the effective thermoelastic properties of a composite consisting of nanoparticles embedded in a semi-crystalline polymeric matrix, this work adopts a coherent interface model for the nanoparticle-matrix interface and proposes an extended version of the classical generalized-self consistent method. In particular, Eshelby's formulae widely used to calculate the elastic energy change of a homogeneous medium due to the introduction of an inhomogeneity are extended to the thermoelastic case. The nanoparticle size effect on the effective thermoelastic moduli of the composite are theoretically shown and numerically illustrated.  相似文献   

2.
A Hashin-Shtrikman-Willis variational principle is employed to derive two exact micromechanics-based nonlocal constitutive equations relating ensemble averages of stress and strain for two-phase, and also many types of multi-phase, random linear elastic composite materials. By exact is meant that the constitutive equations employ the complete spatially-varying ensemble-average strain field, not gradient approximations to it as were employed in the previous, related work of Drugan and Willis (J. Mech. Phys. Solids 44 (1996) 497) and Drugan (J. Mech. Phys. Solids 48 (2000) 1359) (and in other, more phenomenological works). Thus, the nonlocal constitutive equations obtained here are valid for arbitrary ensemble-average strain fields, not restricted to slowly-varying ones as is the case for gradient-approximate nonlocal constitutive equations. One approach presented shows how to solve the integral equations arising from the variational principle directly and exactly, for a special, physically reasonable choice of the homogeneous comparison material. The resulting nonlocal constitutive equation is applicable to composites of arbitrary anisotropy, and arbitrary phase contrast and volume fraction. One exact nonlocal constitutive equation derived using this approach is valid for two-phase composites having any statistically uniform distribution of phases, accounting for up through two-point statistics and arbitrary phase shape. It is also shown that the same approach can be used to derive exact nonlocal constitutive equations for a large class of composites comprised of more than two phases, still permitting arbitrary elastic anisotropy. The second approach presented employs three-dimensional Fourier transforms, resulting in a nonlocal constitutive equation valid for arbitrary choices of the comparison modulus for isotropic composites. This approach is based on use of the general representation of an isotropic fourth-rank tensor function of a vector variable, and its inverse. The exact nonlocal constitutive equations derived from these two approaches are applied to some example cases, directly rationalizing some recently-obtained numerical simulation results and assessing the accuracy of previous results based on gradient-approximate nonlocal constitutive equations.  相似文献   

3.
Elastic buckling of layered/fibre reinforced composites is investigated. Assuming the existence of both shear and transverse modes of failure, the fibre is analysed as a layer embedded in a matrix. Interacting stresses, acting at the interfaces are determined from an exact derived stress field in the matrix. It is shown that buckling can occur only in the shear buckling mode and that the transverse buckling mode is spurious. As opposed to the well known Rosen shear buckling mode solution (predicated on an infinite buckling wavelength), shear buckling is shown to exist under two régimes: buckling of dilute composites with finite wavelengths and buckling of non-dilute composites with infinite wavelengths. Based on the analysis, a model is constructed which defines the fibre concentration at which the transition between the two régimes occurs. The buckling strains are shown to be (approximately) constant for dilute composites and, in the case of very stiff fibres, to have realistic values compatible with elastic behaviour. For the case of non-dilute composites, the strains are found to be in agreement with those given by the Rosen shear buckling solution. Numerical results for the buckling strains and stresses are presented and compared with the Rosen solution. These reveal that the Rosen solution is valid only for the case of non-dilute composites. The investigation demonstrates that elastic buckling may be a dominant failure mechanism of composites consisting of very stiff fibres fabricated in the framework of nano-technology.  相似文献   

4.
Since polymers play an increasingly important role in both structural and tribological applications, understanding their intrinsic mechanical response is key. Therefore in the last few decades much effort has been devoted into the development of constitutive models that capture the polymers' intrinsic mechanical response quantitatively. An example is the Eindhoven Glassy Polymer model. In practice most polymers are filled, e.g. with hard particles or fibers, with colorants, or with soft particles that serve as impact modifiers. To characterize the influence of type and amount of filler particles on the intrinsic mechanical response, we designed model systems of polycarbonate with different volume fractions of small, order 100 nm sized, either hard or soft particles, and tested them in lubricated uniaxial compression experiments. To reveal the local effects on interparticle level, three-dimensional representative volume elements (RVEs) were constructed. The matrix material is modeled with the EGP model and the fillers with their individual mechanical properties. It is first shown that (only) 32 particles are sufficient to capture the statistical variations in these systems. Comparing the simulated response of the RVEs with the experiments demonstrates that in the small strain regime the stress is under-predicted since the polymer matrix is modeled by using only one single relaxation time. The yield- and the large strain response is captured well for the soft-particle filled systems while, for the hard-particles at increased filler loadings, the predictions are less accurate. This is likely caused by polymer–filler interactions that result in accelerated physical aging of the polymer matrix close to the surfaces. Modifying the Sa-parameter, that captures the thermodynamic state of the polymer matrix, allows us to correctly predict the macroscopic response after yield. The simulations reveal that all rate-dependencies of the different filled systems originate from that of the polymer matrix. Finally, an onset is presented to predict local and global failure based on critical events on the microlevel, that are likely to cause the over-prediction in the large-strain response of the hard-particle filled systems.  相似文献   

5.
The composite under investigation consists of an elastoplastic matrix reinforced by elastic particles or weakened by pores. The material forming the matrix is pressure-sensitive. The Drucker–Prager yield criterion and a one-parameter non-associated flow rule are employed to formulate the yield behavior of the matrix. The objective of this work is to estimate the effective elastoplastic behavior of the composite under isotropic tensile and compressive loadings. To achieve this objective, the composite sphere assemblage model of Hashin [Z. Hashin, The elastic moduli of heterogeneous materials, ASME J. Appl. Mech. 29 (1962) 143–150] is used. Exact solutions are thus derived as estimations for the effective secant and tangent bulk moduli of the composite. The effects of the loading modes and phase properties on the effective elastoplastic behavior of the composite are analytically and numerically evaluated.  相似文献   

6.
In this investigation, it is shown that the onset of ductile fracture in tension can be interpreted as the result of a supercritical bifurcation of homogeneous deformation and that this fact can be applied to predict ductile fracture initiation of materials with general imperfections or flaws. We focus on one dimensional quasi-static simple tension for rate-independent isotropic plastic materials. For deformation beyond the bifurcation point, multiple equilibrium paths appear. The homogeneous deformation, as one of the equilibrium paths, loses stability while the inhomogeneous paths are stable, thus indicating the occurrence of strain localization. This investigation also provides a physical example for the application of the Lambert W function in material localization analyses. Material instability is treated as the instability of a static system with dynamic perturbation. We also address the presence of microvoids in a power law plastic material as an unfolding of the supercritical pitchfork bifurcation. The imperfect system, idealized as spherical voids within the plastic matrix, is analyzed using the familiar Gurson model which is based on the presumption of a randomly voided material and characterized by the volume fraction of voids. If, in addition, the sizes of the microvoids are known, this then provides a length scale for the imperfection zone. In this manner, relevance to the sample size effects of strain-to-failure for ductile fracture initiation is addressed by considering separate zones with variations in void volume fractions. Fracture initiation predictions are presented and compare very well to existing experimental results.  相似文献   

7.
The rigorous classical bounds of elastic composite materials theory provide limits on the achievable composite stiffnesses in terms of the properties and arrangements of the composite's constituents. These bounds result from the assumption, presumably made for stability reasons, that each constituent material must have positive-definite elastic moduli. If this assumption is relaxed, recently published elasticity analyses and experimental measurements show these bounds can be greatly exceeded, resulting in new materials of enormous potential.The key question is whether a composite material having a non-positive-definite constituent can be stable overall in the practically useful situation of applied traction boundary conditions. Drugan [2007. Elastic composite materials having a negative-stiffness phase can be stable. Phys. Rev. Lett. 98 (5), article no. 055502] first proved the answer is yes, by applying the energy criterion of elastic stability to the basic two- and three-dimensional composites consisting of a cylinder or sphere having non-positive-definite (but strongly elliptic) moduli with a thin positive-definite coating and proving overall stability provided the coating is sufficiently stiff.Here, we perform a complete and direct dynamic stability analysis of the plane strain fundamental elastic composite consisting of a circular cylinder of non-positive-definite material firmly bonded to a positive-definite concentric coating, for the full range of coating thicknesses (i.e., volume fractions). We determine quantitatively the full permissible range of inclusion and coating moduli, as a function of coating thickness, for which the overall composite is stable under dead traction boundary conditions. Among the results, we show that in the thin-coating case, the present dynamic stability analysis leads to precisely the same analytical stability requirements as those derived via the energy criterion by Drugan [2007. Elastic composite materials having a negative-stiffness phase can be stable. Phys. Rev. Lett. 98 (5), article no. 055502], and we derive new analytical stability requirements that are valid for a wider range of coating thickness. At the other extreme, we show that in the case of very thick coatings (corresponding to the dilute case of a matrix-inclusion composite), even an inclusion with merely strongly elliptic moduli can be stabilized by a positive-definite matrix satisfying weak requirements, for which we derive analytical expressions. Overall, our results show that surprisingly weak restrictions on the moduli and thickness of the positive-definite coating are sufficient to stabilize a non-positive-definite inclusion, even one whose moduli are merely strongly elliptic. These results legitimize expanding the search for novel materials with extreme properties to those incorporating a non-positive-definite constituent, and they provide quantitative restrictions on the constituent materials’ moduli and volume fractions, for the geometry examined here, that ensure overall stability of such composite materials.  相似文献   

8.
Predictions are made for the size effect on strength of a random, isotropic two-phase composite. Each phase is treated as an isotropic, elastic-plastic solid, with a response described by a modified deformation theory version of the Fleck-Hutchinson strain gradient plasticity formulation (Fleck and Hutchinson, J. Mech. Phys. Solids 49 (2001) 2245). The essential feature of the new theory is that the plastic strain tensor is treated as a primary unknown on the same footing as the displacement. Minimum principles for the energy and for the complementary energy are stated for a composite, and these lead directly to elementary bounds analogous to those of Reuss and Voigt. For the case of a linear hardening solid, Hashin-Shtrikman bounds and self-consistent estimates are derived. A non-linear variational principle is constructed by generalising that of Ponte Castañeda (J. Mech. Phys. Solids 40 (1992) 1757). The minimum principle is used to derive an upper bound, a lower estimate and a self-consistent estimate for the overall plastic response of a statistically homogeneous and isotropic strain gradient composite. Sample numerical calculations are performed to explore the dependence of the macroscopic uniaxial response upon the size scale of the microstructure, and upon the relative volume fraction of the two phases.  相似文献   

9.
This paper is concerned with the development of an improved second-order homogenization method incorporating field fluctuations for nonlinear composite materials. The idea is to combine the desirable features of two different, earlier methods making use of “linear comparison composites”, the properties of which are chosen optimally from suitably designed variational principles. The first method (Ponte Castañeda, J. Mech. Phys. Solids 39 (1991) 45) makes use of the “secant” moduli of the phases, evaluated at the second moments of the strain field over the phases, and delivers bounds, but these bounds are only exact to first-order in the heterogeneity contrast. The second method (Ponte Castañeda, J. Mech. Phys. Solids 44 (1996) 827) makes use of the “tangent” moduli, evaluated at the phase averages (or first moments) of the strain field, and yields estimates that are exact to second-order in the contrast, but that can violate the bounds in some special cases. These special cases turn out to correspond to situations, such as percolation phenomena, where field fluctuations, which are captured less accurately by the second-order method than by the bounds, become important. The new method delivers estimates that are exact to second-order in the contrast, making use of generalized secant moduli incorporating both first- and second-moment information, in such a way that the bounds are never violated. Some simple applications of the new theory are given in Part II of this work.  相似文献   

10.
In Part I of this work, an improved “second-order” homogenization theory was developed. This new theory makes use of generalized secant moduli that are intermediate between the standard secant and tangent moduli of the nonlinear phases, and that depend not only on the averages, or first-moments of the fields in the phases, but also on the second-moments of the field fluctuations, or phase covariance tensors. In this article, the theory, which is known to be exact to second-order in the heterogeneity contrast, is applied to the special cases of rigidly reinforced and porous materials. These are cases corresponding to infinite contrast where fairly explicit analytical expressions of the Hashin-Shtrikman and self-consistent-type may be generated for nonlinear composites. The results show that the new theory improves on the earlier theory (Ponte Castañeda, J. Mech. Phys. Solids 44 (1996) 827) in at least two ways. First, the new theory satisfies rigorous bounds, even near the percolation limit, where field fluctuations become important, and the earlier second-order theory had been found to fail. Second, the new theory predicts fully compressible behavior for porous materials with an incompressible matrix phase, where the earlier theory had also been found to fail. In addition, the new estimates are found to be in better agreement with numerical simulations available from the literature.  相似文献   

11.
In Part I of this paper, we presented a general homogenization framework for determining the overall behavior, the evolution of the underlying microstructure, and the possible onset of macroscopic instabilities in fiber-reinforced elastomers subjected to finite deformations. In this work, we make use of this framework to generate specific results for general plane-strain loading of elastomers reinforced with aligned, cylindrical fibers. For the special case of rigid fibers and incompressible behavior for the matrix phase, closed-form, analytical results are obtained. The results suggest that the evolution of the microstructure has a dramatic effect on the effective response of the composite. Furthermore, in spite of the fact that both the matrix and the fibers are assumed to be strongly elliptic, the homogenized behavior is found to lose strong ellipticity at sufficiently large deformations, corresponding to the possible development of macroscopic instabilities [Geymonat, G., Müller, S., Triantafyllidis, N., 1993. Homogenization of nonlinearly elastic materials, macroscopic bifurcation and macroscopic loss of rank-one convexity. Arch. Rat. Mech. Anal. 122, 231-290]. The connection between the evolution of the microstructure and these macroscopic instabilities is put into evidence. In particular, when the reinforced elastomers are loaded in compression along the long, in-plane axis of the fibers, a certain type of “flopping” instability is detected, corresponding to the composite becoming infinitesimally soft to rotation of the fibers.  相似文献   

12.
To achieve certain properties, semiconductor adhesives and molding compounds are made by blending filler particles with polymer matrix. Moisture collects at filler particle/polymer matrix interfaces and within voids of the composite. At reflow temperatures, the moisture vaporizes. The rapidly expanding vapor creates high internal pressure on pre-existing voids and particle/matrix interfaces. The simultaneous action of thermal stresses and internal vapor pressure drives both pre-existing and newly nucleated voids to grow and coalesce causing material failure. Particularly susceptible are polymeric films and adhesives joining elastic substrates, e.g. Ag filled epoxy. Several competing failure mechanisms are studied including: near-tip void growth and coalescence with the crack; extensive void growth and formation of an extended damaged zone emanating from the crack; and rapid void growth at highly stressed sites at large distances ahead of the crack, leading to multiple damaged zones. This competition is driven by the interplay between stress elevation induced by constrained plastic flow and stress relaxation due to vapor pressure assisted void growth.A model problem of a ductile film bonded between two elastic substrates, with a centerline crack, is studied. The computational study employs a Gurson porous material model incorporating vapor pressure effects. The formation of multiple damaged zones is favored when the film contains small voids or dilute second-phase particle distribution. The presence of large voids or high vapor pressure favor the growth of a self-similar damage zone emanating from the crack. High vapor pressure accelerates film cracking that can cause device failures.  相似文献   

13.
The growth of a spherical void in an elastic–plastic body, subjected to external pressure or tension and a gas pressure as well as a surface stress at the void surface, is investigated. The deformation, strain and stress state in the full body is presented. In addition, the local and global energy terms are calculated. Finally the total thermodynamic force on the void surface as well as the total dissipation are evaluated and compared allowing the calculation of the mechanical contribution to void growth due to diffusion of vacancies generated by plastification or irradiation.  相似文献   

14.
Plastic constitutive relations are derived for a class of anisotropic porous materials consisting of coaxial spheroidal voids, arbitrarily oriented relative to the embedding orthotropic matrix. The derivations are based on nonlinear homogenization, limit analysis and micromechanics. A variational principle is formulated for the yield criterion of the effective medium and specialized to a spheroidal representative volume element containing a confocal spheroidal void and subjected to uniform boundary deformation. To obtain closed form equations for the effective yield locus, approximations are introduced in the limit-analysis based on a restricted set of admissible microscopic velocity fields. Evolution laws are also derived for the microstructure, defined in terms of void volume fraction, aspect ratio and orientation, using material incompressibility and Eshelby-like concentration tensors. The new yield criterion is an extension of the well known isotropic Gurson model. It also extends previous analyses of uncoupled effects of void shape and material anisotropy on the effective plastic behavior of solids containing voids. Preliminary comparisons with finite element calculations of voided cells show that the model captures non-trivial effects of anisotropy heretofore not picked up by void growth models.  相似文献   

15.
Exact solutions are derived for the problem of a two-dimensional, infinitely anisotropic, linear-elastic medium containing a periodic lattice of voids. The matrix material possesses either one infinitely soft, or one infinitely hard loading direction, which induces localized (singular) field configurations. The effective elastic moduli are computed as functions of the porosity in each case. Their dilute expansions feature half-integer powers of the porosity, which can be correlated to the localized field patterns. Statistical characterizations of the fields, such as their first moments and their histograms are provided, with particular emphasis on the singularities of the latter. The behavior of the system near the void close-packing fraction is also investigated. The results of this work shed light on corresponding results for strongly non-linear porous media, which have been obtained recently by means of the “second-order” homogenization method, and where the dilute estimates also exhibit fractional powers of the porosity.  相似文献   

16.
A promising strategy to increase the tensile failure strain of carbon fibre-reinforced composites is to hybridise carbon fibres with other, higher-elongation fibres. The resulting increase in failure strain is known as the hybrid effect. In the present article, a global load-sharing model for hybrid composites is developed and used to carry out a parametric study for carbon/glass hybrids. Hybrid effects of up to 15% increase in failure strain are predicted, corresponding reasonably well to literature data. Scatter in the carbon fibre strength is shown to be crucial for the hybrid effect, while the scatter in glass fibre strength is much less important. In contrast to reports in earlier literature, the ratio of failure strains of the two fibres has only a small influence on the hybrid effect. The results provide guidelines for designing optimal hybrid composites.  相似文献   

17.
A three-dimensional micromechanical unit cell model for particle-filled materials is presented. The cell model is based on a Voronoi tessellation of particles arranged on a body-centered cubic (BCC) array. The three-dimensionality of the present cell model enables the study of several deformation modes, including uniaxial, plane strain and simple shear deformations, as well as arbitrary principal stress states.The unit cell model is applied to studies on the micromechanical and macromechanical behavior of rubber-toughened polycarbonate. Different load cases are examined, including plane strain deformation, simple shear deformation and principal stress states. For a constant macroscopic strain rate, the different load cases show that the macroscopic flow strength of the blend decreases with an increase in void volume fraction, as expected. The main mechanism for plastic deformation is broad shear banding across inter-particle ligaments. The distributed nature of plastic straining acts to reduce the amount of macroscopic strain softening in the blend as the initial void volume fraction is increased. In the case of plane strain deformation, the plastic flow is observed to initiate across inter-particle ligaments in the direction of constraint. This particular mode of deformation could not have been captured using a two-dimensional, plane strain idealization of cylindrical voids in a matrix.The potential for localized crazing and/or cavitation in the matrix is addressed. It is observed that the introduction of voids acts to relieve hydrostatic stress in the matrix material, compared to the homopolymer. It is also seen that the predicted peak hydrostatic stress in the matrix is higher under plane strain deformation than under triaxial tension (with equal lateral stresses), for the same macroscopic stress triaxiality.The effect of void volume fraction on the macroscopic uniaxial tension behavior of the different blends is examined using a Considère construction for dilatant materials. The natural draw ratio was predicted to decrease with an increase in void volume fraction.  相似文献   

18.
Central to this analysis is the identification of six rotation invariant scalars α1-6 that succinctly define the strain in materials that have one family of parallel fibers arranged in laminae. These scalars were chosen so as to minimize covariance amongst the response terms in the hyperelastic limit, and they are termed strain attributes because it is necessary to distinguish them from strain invariants. The Cauchy stress t is expressed as the sum of six response terms, almost all of which are mutually orthogonal for finite strain (i.e. 14 of the 15 inner products vanish). For small deformations, the response terms are entirely orthogonal (i.e. all 15 inner products vanish). A response term is the product of a response function with its associated kinematic tensor. Each response function is a scalar partial derivative of the strain energy W with respect to a strain attribute. Applications for this theory presently include myocardium (heart muscle) which is often modeled as having muscle fibers arranged in sheets. Utility for experimental identification of strain energy functions is demonstrated by showing that common tests on incompressible materials can directly determine terms in W. Since the described set of strain attributes reduces the covariance amongst response terms, this approach may enhance the speed and precision of inverse finite element methods.  相似文献   

19.
We performed atomistic simulations to study the effect of free surfaces on the structure and elastic properties of gold nanowires aligned in the 〈100〉 and 〈111〉 crystallographic directions. Computationally, we formed a nanowire by assembling gold atoms into a long wire with free sides by putting them in their bulk fcc lattice positions. We then performed a static relaxation on the assemblage. The tensile surface stresses on the sides of the wire cause the wire to contract along the length with respect to the original fcc lattice, and we characterize this deformation in terms of an equilibrium strain versus the cross-sectional area. While the surface stress causes wires of both orientations and all sizes to increasingly contract with decreasing cross-sectional area, when the cross-sectional area of a 〈100〉 nanowire is less than , the wire undergoes a phase transformation from fcc to bct, and the equilibrium strain increases by an order of magnitude. We then applied a uniform uniaxial strain incrementally to 1.2% to the relaxed nanowires in a molecular statics framework. From the simulation results we computed the effective axial Young's modulus and Poisson's ratios of the nanowire as a function of cross-sectional area. We used two approaches to compute the effective elastic moduli, one based on a definition in terms of the strain derivative of the total energy and another in terms of the virial stress often used in atomistic simulations. Both give quantitatively similar results, showing an increase in Young's modulus with a decrease of cross-sectional area in the nanowires that do not undergo a phase transformation. Those that undergo a phase transformation experience an increase of about a factor of three of Young's modulus. The Poisson's ratio of the 〈100〉 wires that do not undergo a phase transformation show little change with the cross-sectional area. Those wires that undergo a phase transformation experience an increase of about 10% in Poisson's ratio. The 〈111〉 wires show, with a decrease of cross-sectional area, an increase in one of Poisson's ratios and small change in the other.  相似文献   

20.
Elastic properties of model random three-dimensional open-cell solids   总被引:1,自引:0,他引:1  
Most cellular solids are random materials, while practically all theoretical structure-property relations are for periodic models. To generate theoretical results for random models the finite element method (FEM) was used to study the elastic properties of open-cell solids. We have computed the density (ρ) and microstructure dependence of the Young's modulus (E) and Poisson's ratio (ν) for four different isotropic random models. The models were based on Voronoi tessellations, level-cut Gaussian random fields, and nearest neighbour node-bond rules. These models were chosen to broadly represent the structure of foamed solids and other (non-foamed) cellular materials. At low densities, the Young's modulus can be described by the relation Eρn. The exponent n and constant of proportionality depend on microstructure. We find 1.3<n<3, indicating a more complex dependence than indicated by periodic cell theories, which predict n=1 or 2. The observed variance in the exponent was found to be consistent with experimental data. At low densities we found that ν≈0.25 for three of the four models studied. In contrast, the Voronoi tessellation, which is a common model of foams, became approximately incompressible (ν≈0.5). This behaviour is not commonly observed experimentally. Our studies showed the result was robust to polydispersity and that a relatively large number (15%) of the bonds must be broken to significantly reduce the low-density Poission's ratio to ν≈0.33.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号