首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We consider a continuum model for chemically induced volume transitions in hydrogels. Consistent with experimental observations, the model allows for a sharp interface separating swelled and collapsed phases of the underlying polymer network. The polymer chains are treated as a solute with an associated diffusion potential and their concentration is assumed to be discontinuous across the interface. In addition to the standard bulk and interfacial equations imposing force balance and solute balance, the model involves a supplemental interfacial equation imposing configurational force balance. We present a hybrid eXtended-Finite-Element/Level-Set Method for obtaining approximate solutions to the governing equations of the model. As an application, we consider the swelling of a spherical specimen whose boundary is traction-free and is in contact with a reservoir of uniform chemical potential. Our numerical results exhibit good qualitative comparison with experimental observations and predict characteristic swelling times that are proportional to the square of the specimen radius. Our results also suggest several possible synthetic pathways that might be pursued to engineer hydrogels with optimal response times.  相似文献   

2.
This paper describes coherent gradient sensing (CGS) as an optical, full-field, real-time, nonintrusive, noncontact technique for measurement of curvature and curvature changes in single-layered and multilayered thin films deposited on substrates. The sensitivity of the basic CGS technique is enhanced using optical fringe multiplication to map curvature in very flat specimens (k0.001 m–1). Subsequently, this curvature measurement technique is applied to the determination of the yield properties of thin films subjected to cyclic thermomechanical loading.  相似文献   

3.
4.
The mechanical properties of interphase regions at bi-material interfaces can be quite different from the surrounding bulk materials. For composite materials, this interphase region is usually thin but plays an important role in their overall mechanical properties. Nanoindentation has become a commonly used experimental technique for measuring the mechanical properties of materials, especially when one of the dimensions is small. However, the extraction of reduced elastic modulus from the nanoindentation of thin films on substrates can pose challenges due to the influence of the substrate. In this study, the nanoindentation of thin films on substrates has been examined with a view to extracting the reduced modulus of thin polymer films.Thin films of (3-aminopropyl)triethoxysilane (C9H23NO3Si, γ-APS) were deposited on silicon. An interfacial force microscope (IFM) was used to indent the γ-APS films. The effect of the substrate was studied by considering two very different thicknesses ( and ). The nanoindentation data were analyzed via contact mechanics theories and a finite element analysis that incorporated surface interactions. The analyses showed that nanoindentation experiments can provide reliable values of film modulus when the film is very different from the substrate. It was found that the commonly used rule of thumb that the indentation depth should be less than 10% of the thickness did not eliminate substrate effects for a wide range of material combinations. Instead, it is proposed that the contact radius should be less than 10% of the thickness so that contact mechanics theories for monolithic materials can be used without considering the presence of the substrate. The modulus of γ-APS polymer films and the surface energy between the tungsten tip of the IFM and γ-APS films were extracted and were related to their cure. A completely cured thick γ-APS film had a reduced modulus of . This value falls in the usual range for polymers due to the amorphous nature of the γ-APS films.  相似文献   

5.
This article evaluates the effect of material inhomogeneities on the crack-tip driving force in general inhomogeneous bodies and reports results for bimaterial composites. The theoretical model, based on Eshelby material forces, makes no assumptions about the distribution of the inhomogeneities or the constitutive properties of the materials. Inhomogeneities are modeled by making the stored energy have an explicit dependence on the reference coordinates. Then the material inhomogeneity effect on the crack-tip driving force is quantified by the term Cinh, which is the integral of the gradient of the stored energy in the direction of crack growth. The model is demonstrated by two model problems: (i) bimaterial elastic composite using asymptotic solutions and (ii) graded elastic and elastic-plastic compact tension specimen using numerical methods for stress analysis.  相似文献   

6.
7.
The recent diagnostic capability of the Omega laser to study solid-solid phase transitions at pressures greater than 10 GPa and at strain rates exceeding 107 s−1 has also provided valuable information on the dynamic elastic-plastic behavior of materials. We have found, for example, that plasticity kinetics modifies the effective loading and thermodynamic paths of the material. In this paper we derive a kinetics equation for the time-dependent plastic response of the material to dynamic loading, and describe the model’s implementation in a radiation-hydrodynamics computer code. This model for plasticity kinetics incorporates the Gilman model for dislocation multiplication and saturation. We discuss the application of this model to the simulation of experimental velocity interferometry data for experiments on Omega in which Fe was shock compressed to pressures beyond the α-to-ε phase transition pressure. The kinetics model is shown to fit the data reasonably well in this high strain rate regime and further allows quantification of the relative contributions of dislocation multiplication and drag. The sensitivity of the observed signatures to the kinetics model parameters is presented.  相似文献   

8.
In the presence of plastic slip gradients, compatibility requires gradients in elastic rotation and stretch tensors. In a crystal lattice the gradient in elastic rotation can be related to bond angle changes at cores of so-called geometrically necessary dislocations. The corresponding continuum strain energy density can be obtained from an interatomic potential that includes two- and three-body terms. The three-body terms induce restoring moments that lead to a couple stress tensor in the continuum limit. The resulting stress and couple stress jointly satisfy a balance law. Boundary conditions are obtained upon stress, couple stress, strain and strain gradient tensors. This higher-order continuum theory was formulated by Toupin (Arch. Ration. Mech. Anal. 11 (1962) 385). Toupin's theory has been extended in this work to incorporate constitutive relations for the stress and couple stress under multiplicative elastoplasticity. The higher-order continuum theory is exploited to solve a boundary value problem of relevance to single crystal and polycrystalline nano-devices. It is demonstrated that certain slip-dominated deformation mechanisms increase the compliance of nanostructures in bending-dominated situations. The significance of these ideas in the context of continuum plasticity models is also dwelt upon.  相似文献   

9.
An integral expression that is domain independent in curvilinear coordinates and compatible with zero divergence of Eshelby's (Phil. Trans. Roy. Soc. (London) 244 (1951) 87.) energy momentum tensor was obtained from the principle of virtual work. By applying Eshelby's definition of the force on a material defect a general expression of the crack extension force for a curved crack in three dimensions, here called the F-integral, was derived from the domain independent integral expression. The F-integral is given explicitly for a number of curved cracks and found to be in agreement with previously known solutions, when available. The influence of crack surface and crack front curvature upon the various forms of the F-integral is discussed. The F-integral presented in this work is a generalisation of the J-integral (Rice, J. Appl. Mech. 35 (1968) 379.) to curved cracks in orthogonal curvilinear coordinates.  相似文献   

10.
The topology of the telephone cord buckling of compressed diamond-like carbon films (DLC) on glass substrates has been characterized with atomic force microscopy (AFM) and with the focused ion beam (FIB) imaging system. The profiles of the several buckles have been measured by AFM to establish the symmetry of each repeat unit, revealing similarity with a circular buckle pinned at its center. By making parallel cuts through the buckle in small, defined locations, straight-sided buckles have been created on the identical films, enabling the residual stress in the film to be determined from the profile.It has been shown that the telephone cord topology can be effectively modeled as a series of pinned circular buckles along its length, with an unpinned circular buckle at its front. The unit segment comprises a section of a full circular buckle, pinned to the substrate at its center. The model is validated by comparing radial profiles measured for the telephone cord with those calculated for the pinned buckle, upon using the residual stress in the film, determined as above. Once validated, the model has been used to determine the energy release rate and mode mixity, G(ψ).The results for G(ψ) indicate that the telephone cord configuration is preferred when the residual stress in the DLC is large, consistent with observations that straight-sided buckles are rarely observed, and, when they occur, are generally narrower than telephone cords. Telephone cords are observed in many systems, and can be regarded as the generic morphology. Nevertheless, they exist subject to a limited set of conditions, residing within the margin between complete adherence and complete delamination, provided that the interface has a mode II toughness low enough to ensure that the buckle crack does not kink into the substrate.  相似文献   

11.
The standard view of mechanical adhesive contact is as a competition between a reduction in free energy when surfaces with bonding potential come into contact and an increase in free energy due to elastic deformation that is required to make these surfaces conform. An equilibrium state is defined by an incremental balance between these effects, akin to the Griffith crack growth criterion. In the case of adhesion of biological cells, the molecules that tend to form surface-to-surface bonds are confined to the cell wall but they are mobile within the wall, adding a new phenomenon of direct relevance to adhesive contact. In this article, the process of adhesive contact of an initially curved elastic plate to a flat surface is studied for the case in which the binders that account for adhesion are able to migrate within the plate. This is done by including entropic free energy of the binder distribution in the total free energy of the system. By adopting a constitutive assumption that binders migrate at a speed proportional to the local gradient in chemical potential, the transient growth of an adhesion zone due to binder transport is analyzed. For the case of a plate of very large extent, the problem can be solved in closed form, whereas numerical methods are invoked for the case of a plate of limited extent. Results are presented on the rate of growth of an adhesion zone in terms of system parameters, on the evolution of the distribution of binders and, in the case of a plate of limited extent, on the long-term limiting size of the adhesion zone.  相似文献   

12.
A method is proposed to estimate the size-dependent yield strength of columnar-grained freestanding thin films. The estimate relies on assuming a distribution of the size of Frank-Read sources, which is then translated into a log-normal distribution of the source strength, depending on film thickness, grain size and theoretical strength of the material, augmented with a single fit parameter. Two-dimensional discrete dislocation plasticity (DDP) simulations are carried out for two sets of Cu films and the fit parameter is determined from independent experiments. Subsequent DDP predictions of the stress-strain curves in comparison with the corresponding experimental data show excellent agreement of initial yield strength and hardening rate for films of varying film thickness and grain size. Having thus demonstrated the power of the proposed strength distribution, it is shown that the mode of this distribution governs the most effective source strength. This is then used to suggest a method to estimate the yield strength of thin films as a function of film thickness and grain size. Simple maps are presented that are in very good agreement with recent experimental results for Cu thin films.  相似文献   

13.
The plastic zone of the growing mode III crack in an elastic perfectly plastic solid consists of two sectors in contact with each other. The sector closer to the crack plane, first studied analytically by Chitaley and McClintock (CM), consists of a fan of straight maximum shear stress trajectories that are focused on the crack tip. The other sector, first analyzed numerically by Dean and Hutchinson (DH), is a ‘radial’ fan of straight lines that are not focused at the crack tip or at another common point. In this paper it is shown with use of the dislocation density field that the need that the stress magnitude in the plastic wake be below the yield stress requires the existence of an unfocused fan in the DH sector. It appears unlikely that this result can be obtained without explicit use of dislocations.  相似文献   

14.
A fundamental model of cyclic instabilities in thermal barrier systems   总被引:2,自引:0,他引:2  
Cyclic morphological instabilities in the thermally grown oxide (TGO) represent a source of failure in some thermal barrier systems. Observations and simulations have indicated that several factors interact to cause these instabilities to propagate: (i) thermal cycling; (ii) thermal expansion misfit; (iii) oxidation strain; (iv) yielding in the TGO and the bond coat; and (v) initial geometric imperfections. This study explores a fundamental understanding of the propagation phenomenon by devising a spherically symmetric model that can be solved analytically. The applicability of this model is addressed through comparison with simulations conducted for representative geometric imperfections and by analogy with the elastic/plastic indentation of a half space. Finite element analysis is used to confirm and extend the model. The analysis identifies the dependencies of the instability on the thermo-mechanical properties of the system. The crucial role of the in-plane growth strain is substantiated, as well as the requirement for bond coat yielding. It is demonstrated that yielding of the TGO is essential and is, in fact, the phenomenon that differentiates between cyclic and isothermal responses.  相似文献   

15.
The effect of changing strain paths on the forming limit stresses of sheet metals is investigated using the Marciniak–Kuczyński model and a phenomenological plasticity model with non-normality effects [Kuroda, M., Tvergaard, V., 2001. A phenomenological plasticity model with non-normality effects representing observations in crystal plasticity. J. Mech. Phys. Solids 49, 1239–1263]. Forming limits are simulated for linear stress paths and two types of combined loading: a combined loading consisting of two linear stress paths in which unloading is included between the first and second loadings (combined loading A), and combined loading in which the strain path is abruptly changed without unloading (combined loading B). The forming limit stresses calculated for combined loading A agree well with those calculated for the linear stress paths, while the forming limit curves in strain space depend strongly on the strain paths. The forming limit stresses calculated for the combined loading B do not, however, coincide with those calculated for the linear stress paths. The strain-path dependence of the forming limit stress is discussed in detail by observing the strain localization process.  相似文献   

16.
17.
When copper is deformed to large strains its texture and microstructure change drastically, leading to plastic anisotropy and extended transients when it is reloaded along a different strain path. For predicting these transients, we develop a constitutive model for polycrystalline metals that incorporates texture and grain microstructure. The directional anisotropy in the single crystals is considered to be induced by variable latent hardening associated with cross-slip, cut-through of planar dislocation walls, and dislocation-based reversal mechanisms. These effects are introduced in a crystallographic hardening model which is, in turn, implemented into a polycrystal model. This approach successfully explains the flow response of OFHC Cu pre-loaded in tension (compression) and reloaded in tension (compression), and the response of OFHC Cu severely strained in shear by equal channel angular extrusion and subsequently compressed in each of the three orthogonal directions. This new theoretical framework applies to arbitrary strain path changes, and is fully anisotropic.  相似文献   

18.
This paper is concerned with the multiscale simulation of plastic deformation of metallic specimens using physically-based models that take into account their polycrystalline microstructure and the directionality of deformation mechanisms acting at single-crystal level. A polycrystal model based on self-consistent homogenization of single-crystal viscoplastic behavior is used to provide a texture-sensitive constitutive response of each material point, within a boundary problem solved with finite elements (FE) at the macroscale. The resulting constitutive behavior is that of an elasto-viscoplastic material, implemented in the implicit FE code ABAQUS. The widely-used viscoplastic selfconsistent (VPSC) formulation for polycrystal deformation has been implemented inside a user-defined material (UMAT) subroutine, providing the relationship between stress and plastic strain-rate response. Each integration point of the FE model is considered as a polycrystal with a given initial texture that evolves with deformation. The viscoplastic compliance tensor computed internally in the polycrystal model is in turn used for the minimization of a suitable-designed residual, as well as in the construction of the elasto-viscoplastic tangent stiffness matrix required by the implicit FE scheme.Uniaxial tension and simple shear of an FCC polycrystal have been used to benchmark the accuracy of the proposed implicit scheme and the correct treatment of rotations for prediction of texture evolution. In addition, two applications are presented to illustrate the potential of the multiscale strategy: a simulation of rolling of an FCC plate, in which the model predicts the development of different textures through the thickness of the plate; and the deformation under 4-point bending of textured HCP bars, in which the model captures the dimensional changes associated with different orientations of the dominant texture component with respect to the bending plane.  相似文献   

19.
It is commonly considered that the mechanical properties of the slurry are different from that of ordinary Newtonian fluid, and can be described by that of Bingham fluid. Hence its shearing stress should be described by the formula of the shearing stress of Bingham fluid. But the author holds the contrary opinion and firmly believes that the slurry is a highly viscous fluid with very long relaxation time such as those of asphalt, glass, etc. In this article, we have discussed the mechanical properties of the slurry and the resistance of a sphere moving with uniform velocity in the slurry. In the process of discussion, we use Stokes solution of the viscous fluid passing around a sphere. When the sphere is in equilibrium under the action of gravitational force, the force of buoyancy and the resistance, we get the velocity of sedimentation. When the velocity of sedimentation is equal to zero, we get the relation between the yield stress of Bingham fluid and the diameter of the particles which will not sink. The theoretical results calculated are compared with the experimental data of Northwest Institute of Hydrotechnical Research and Institute of Hydraulic Research, Yellow River Conservancy Commission. They are congruous.  相似文献   

20.
Suitable macroscopic quantities beyond effective elastic properties are used to assess the distribution of stress within a composite. The composite is composed of N anisotropic linearly elastic materials and the length scale of the microstructure relative to the loading is denoted by ε. The stress distribution function inside the composite λε(t) gives the volume of the set where the norm of the stress exceeds the value t. The analysis focuses on the case when 0<ε?1. A rigorous upper bound on limε→0λε(t) is found. The bound is given in terms of a macroscopic quantity called the macro stress modulation function. It is used to provide a rigorous assessment of the volume of over stressed regions near stress concentrators generated by reentrant corners or by an abrupt change of boundary loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号