首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
A systematic study of failure initiation in small-scale specimens has been performed to assess the effect of size scale on “failure properties” by drawing on the classical analysis of elliptically perforated specimens. Limitations imposed by photolithography restricted the minimum radii of curvature of the specimen perforations to one micron. By varying the radius of curvature and the size of the ellipses, the effects of domain size and stress concentration amplitude could be assessed separately to the point where the size of individual grains becomes important. The measurements demonstrate a strong influence of the domain size under elevated stress on the “failure strength” of MEMS scale specimens, while the amplitude, or the variation, of the stress concentration factor is less significant. In agreement with probabilistic considerations of failure, the “local failure strength” at the root of a notch clearly increases as the radius of curvature becomes smaller. Accordingly, the statistical scatter also increases with decreasing size of the (super)stressed domain. When the notch radius becomes as small as the failure stress increases on average by a factor of two relative to the tension values derived from unnotched specimens. This effect becomes moderate for larger radii of curvature, up to a radius of (25 times the grain size), for which the failure stress at the notch tip closely approaches the value of the tensile strength for un-notched tensile configurations. We deduce that standard tests, performed on micron-sized, non-perforated, tension specimens, provide conservative strength values for design purposes. In addition, a Weibull analysis shows for surface-micromachined specimens a dependence of the strength on the specimen length, rather than the surface area or volume, which implies that the sidewall geometry, dimensions and surface conditions can dominate the failure process.  相似文献   

2.
As known, there is a large number of dentin tubules in dentin. These tubules have varying radii and are shaped into radially parallel pattern. The anisotropy of microstructure of dentin shows that dentin should be treated as a material of varying transverse isotropy. In this Part, the elastic stress-strain relations and the quadratic strength criterion are established in the form of having varying transverse isotropy, in the framework of micromechanics to take into account of the effect of the microstructures-dentin tubules. Simplified forms for isotropic and homogeneous cases, as well as the corresponding plane stress form of the stress-strain relations are also given. These theoretical models are very well supported by the experiments shown later in the continued paper (Part II). The project supported by the National Natural Science Foundation of China (19525207).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号