首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
The perceived wisdom about thin sheet fracture is that (i) the crack propagates under mixed mode I & III giving rise to a slant through-thickness fracture profile and (ii) the fracture toughness remains constant at low thickness and eventually decreases with increasing thickness. In the present study, fracture tests performed on thin DENT plates of various thicknesses made of stainless steel, mild steel, 6082-O and NS4 aluminium alloys, brass, bronze, lead, and zinc systematically exhibit (i) mode I “bath-tub”, i.e. “cup & cup”, fracture profiles with limited shear lips and significant localized necking (more than 50% thickness reduction), (ii) a fracture toughness that linearly increases with increasing thickness (in the range of 0.5-). The different contributions to the work expended during fracture of these materials are separated based on dimensional considerations. The paper emphasises the two parts of the work spent in the fracture process zone: the necking work and the “fracture” work. Experiments show that, as expected, the work of necking per unit area linearly increases with thickness. For a typical thickness of , both fracture and necking contributions have the same order of magnitude in most of the metals investigated.A model is developed in order to independently evaluate the work of necking, which successfully predicts the experimental values. Furthermore, it enables the fracture energy to be derived from tests performed with only one specimen thickness. In a second modelling step, the work of fracture is computed using an enhanced void growth model valid in the quasi plane stress regime. The fracture energy varies linearly with the yield stress and void spacing and is a strong function of the hardening exponent and initial void volume fraction. The coupling of the two models allows the relative contributions of necking versus fracture to be quantified with respect to (i) the two length scales involved in this problem, i.e. the void spacing and the plate thickness, and (ii) the flow properties of the material. Each term can dominate depending on the properties of the material which explains the different behaviours reported in the literature about thin plate fracture toughness and its dependence with thickness.  相似文献   

2.
A strain gradient dependent crystal plasticity approach is used to model the constitutive behaviour of polycrystal FCC metals under large plastic deformation. Material points are considered as aggregates of grains, subdivided into several fictitious grain fractions: a single crystal volume element stands for the grain interior whereas grain boundaries are represented by bi-crystal volume elements, each having the crystallographic lattice orientations of its adjacent crystals. A relaxed Taylor-like interaction law is used for the transition from the local to the global scale. It is relaxed with respect to the bi-crystals, providing compatibility and stress equilibrium at their internal interface. During loading, the bi-crystal boundaries deform dissimilar to the associated grain interior. Arising from this heterogeneity, a geometrically necessary dislocation (GND) density can be computed, which is required to restore compatibility of the crystallographic lattice. This effect provides a physically based method to account for the additional hardening as introduced by the GNDs, the magnitude of which is related to the grain size. Hence, a scale-dependent response is obtained, for which the numerical simulations predict a mechanical behaviour corresponding to the Hall-Petch effect. Compared to a full-scale finite element model reported in the literature, the present polycrystalline crystal plasticity model is of equal quality yet much more efficient from a computational point of view for simulating uniaxial tension experiments with various grain sizes.  相似文献   

3.
Plastic flow localisation and ductile failure during tensile testing of friction stir welded aluminium specimens are investigated with a specific focus on modelling the local, finite strain, hardening response. In the experimental part, friction stir welds in a 6005A-T6 aluminium alloy were prepared and analysed using digital image correlation (DIC) during tensile testing as well as scanning electron microscopy (SEM) on polished samples and on fracture surfaces. The locations of the various regions of the weld were determined based on hardness measurements, while the flow behaviour of these zones was extracted from micro-tensile specimens cut parallel to the welding direction. The measured material properties and weld topology were introduced into a 3D finite element model, fully coupled with the damage model. A Voce law hardening model involving a constant stage IV is used within an enhanced Gurson type micro-mechanical damage model, accounting for void nucleation, growth and coalescence, as well as void shape evolution. The stage IV hardening, observed in Simar et al. (2010), was found to increase the stiffness during plastic flow localisation as well as to postpone the onset of fracture as determined by the void coalescence criterion. Furthermore, the presence of a second population of voids was concluded to strongly affect the fracture strain of the high strength regions of the welds. This modelling effort links the microstructure and process parameters to macroscopic parameters relevant to the optimisation of the welds.  相似文献   

4.
A model is proposed that deals with the transient mechanical anisotropy during strain-path changes in metals. The basic mechanism is assumed to be latent hardening or softening of the slip systems, dependent on if they are active or passive during deformation, reflecting microstructural mechanisms that depend on the deformation mode rather than on the crystallography. The new model captures the experimentally observed behaviour of cross hardening in agreement with experiments for an AA3103 aluminium alloy. Generic results for strain reversals qualitatively agree with two types of behaviour reported in the literature – with or without a plateau on the stress–strain curve. The influence of the model parameters is studied through detailed calculations of the response of three selected parameter combinations, including the evolution of yield surface sections subsequent to 10% pre-strain. The mathematical complexity is kept to a minimum by avoiding explicit predictions related directly to underpinning microstructural changes. The starting point of the model is a combination of conventional texture and work hardening approaches, where an adapted full-constraints Taylor theory and a simple single-crystal work-hardening model for monotonic strain are used. However, the framework of the model is not restricted to these particular models.  相似文献   

5.
本文对含不同形状孔洞的幂硬化材料的圆柱体胞模型,运用控制宏观应力三维工的方法进行了有限元分析。计算结果表明:1.孔洞初始形状,应力三维度对孔洞的长大有重要影响;2.Guson模型对孔洞长大规律的描述是不准确的,不准确度与孔洞初始形状,应力三维度有关,修正后的Gurson模型与有限元结果吻合较好;3.在低应力三维度区,孔洞以及形状改变为主,在高应力三维度区,孔洞以扩张为主;  相似文献   

6.
We have examined the problem of the dynamic growth of a single spherical void in an elastic-viscoplastic medium, with a view towards addressing a number of problems that arise during the dynamic failure of metals. Particular attention is paid to inertial, thermal and rate-dependent effects, which have not previously been thoroughly studied in a combined setting. It is shown that the critical stress for unstable growth of the void in the quasistatic case is strongly affected by the thermal softening of the material (in adiabatic calculations). Thermal softening has the effect of lowering the critical stress, and has a stronger influence at high strain hardening exponents. It is shown that the thermally diffusive case for quasistatic void growth in rate-dependent materials is strongly affected by the initial void size, because of the length scale introduced by the thermal diffusion. The effects of inertia are quantified, and it is demonstrated that inertial effects are small in the early stages of void growth and are strongly dependent on the initial size of the void and the rate of loading. Under supercritical loading for the inertial problem, voids of all sizes achieve a constant absolute void growth rate in the long term. Inertia first impedes, but finally promotes dynamic void growth under a subcritical loading. For dynamic void growth, the effect of rate-hardening is to reduce the rate of void growth in comparison to the rate-independent case, and to reduce the final relative void growth achieved.  相似文献   

7.
When copper is deformed to large strains its texture and microstructure change drastically, leading to plastic anisotropy and extended transients when it is reloaded along a different strain path. For predicting these transients, we develop a constitutive model for polycrystalline metals that incorporates texture and grain microstructure. The directional anisotropy in the single crystals is considered to be induced by variable latent hardening associated with cross-slip, cut-through of planar dislocation walls, and dislocation-based reversal mechanisms. These effects are introduced in a crystallographic hardening model which is, in turn, implemented into a polycrystal model. This approach successfully explains the flow response of OFHC Cu pre-loaded in tension (compression) and reloaded in tension (compression), and the response of OFHC Cu severely strained in shear by equal channel angular extrusion and subsequently compressed in each of the three orthogonal directions. This new theoretical framework applies to arbitrary strain path changes, and is fully anisotropic.  相似文献   

8.
To describe the work hardening process of polycrystals processed using various thermomechanical cycles with isochronal annealing from 500 to 900 °C, a dislocation based strain hardening model constructed in the basis of the so-called Kocks–Mecking model is proposed. The time and temperature dependence of flow stress is accounted via grain boundary migration, and the migration is related to annihilation of extrinsic grain boundary dislocations (EGBD’s) by climb via lattice diffusion of vacancies at the triple points. Recovery of yield stress is associated with changes in the total dislocation density term ρT. A sequence of deformation and annealing steps generally result in reduction of flow stress via the annihilation of the total dislocation density ρT defined as the sum of geometrically necessary dislocations ρG and statistically stored dislocations ρS. The predicted variation of yield stress with annealing temperature and cold working stages is in agreement with experimental observations. An attempt is made to determine the mathematical expressions which best describe the deformation behaviour of polycrystals in uniaxial deformation.  相似文献   

9.
This paper studies the effects of the initial relative void spacing, void pattern, void shape and void volume fraction on ductile fracture toughness using three-dimensional, small scale yielding models, where voids are assumed to pre-exist in the material and are explicitly modeled using refined finite elements. Results of this study can be used to explain the observed fracture toughness anisotropy in industrial alloys. Our analyses suggest that simplified models containing a single row of voids ahead of the crack tip is sufficient when the initial void volume fraction remains small. When the initial void volume fraction becomes large, these simplified models can predict the fracture initiation toughness (JIc) with adequate accuracy but cannot predict the correct JR curve because they over-predict the interaction among growing voids on the plane of crack propagation. Consequently, finite element models containing multiple rows of voids should be used when the material has large initial void volume fraction.  相似文献   

10.
Aspects of the cyclically saturated responses of initially annealed, conventional grain size (average grain diameter of approximately 50 μm) and electrodeposited, ultrafine grain (grains from 20 to 500 nm) nickel to reversed proportional and 90° out-of-phase axial-torsional, strain-controlled cycling at a nominally constant equivalent inelastic strain amplitude of approximately 100 μ strain are reported. An anisotropic, axial-torsional subspace version of Abdel-Karim and Ohno’s kinematic hardening model is presented. Within the framework of conventional small strain, rate-independent plasticity, this approach is used to model the responses. An anhysteretic, phenomenolically based, magnetomechanical model is coupled to the rate-independent plasticity model to include the cyclic magnetostriction response. The kinematic hardening parameter determination scheme, using the proportional path responses, is described. The model correlations achieved are presented and the ability of the resulting models to capture the 90° out-of-phase responses is examined. The model parameter sets, as determined from the proportional responses, require small changes to result in more accurate correlation of the 90° out-of-phase responses and the implications of this are discussed. The relative values of the model parameters between the two materials reflect the initial microstructures. Persistent mean stresses associated with mean total strains imposed are successfully modeled for the proportional strain path responses but not for the 90° out-of-phase responses.  相似文献   

11.
The stress–strain behaviour of extruded AA6xxx and AA7xxx aluminium alloys in T6 temper was studied at a wide range of strain rates. Tensile tests at low to medium strain rates were performed in a standard tensile test machine, while a split-Hopkinson tension bar was used to carry out tests at high rates of strain. Extruded aluminium alloys have anisotropic mechanical properties, and tests were therefore done in three directions with respect to the extrusion direction. It is found that the AA6xxx alloys exhibit no significant rate sensitivity in the stress–strain behaviour, while moderate rate sensitivity was found for the AA7xxx alloys. There seems to be no significant difference between the rate sensitivity in the three tensile directions. The experimental data were used to identify the parameters of a thermo-viscoplastic constitutive relation for the extruded alloys, which includes the effects of strain hardening, strain-rate hardening, thermal softening and plastic anisotropy.  相似文献   

12.
Micro-macro scale transition theories were developed to model the inelastic behaviour of polycrystals starting from the local behaviour of the grains. The anisotropy of the plastic behaviour of polycrystalline metals was essentially explained by taking into account the crystallographic textures. Issues like plastic heterogeneities due to grain size dispersion, involving the Hall-Petch mechanism at the grain scale, were often not taken into account, and, only the role of a mean grain size was investigated in the literature. Here, both sources of plastic heterogeneities are studied using: (i) experimental data from EBSD measurements and tensile tests, and, (ii) a self-consistent model devoted to elastic-viscoplastic heterogeneous materials. The results of the model are applied to two different industrial IF steels with similar global orientation distributions functions but different mean grain sizes and grain size distributions. The coupled role of grain size distributions and crystallographic textures on the overall tensile behaviour, local stresses and strains, stored energy and overall plastic anisotropy (Lankford coefficients) is deeply analyzed by considering different other possible correlations between crystallographic orientations and grain sizes from the measured data.  相似文献   

13.
Micromechanics of coalescence in ductile fracture   总被引:2,自引:0,他引:2  
Significant progress has been recently made in modelling the onset of void coalescence by internal necking in ductile materials. The aim of this paper is to develop a micro-mechanical framework for the whole coalescence regime, suitable for finite-element implementation. The model is defined by a set of constitutive equations including a closed form of the yield surface along with appropriate evolution laws for void shape and ligament size. Normality is still obeyed during coalescence. The derivation of the evolution laws is carefully guided by coalescence phenomenology inferred from micromechanical unit-cell calculations. The major implication of the model is that the stress carrying capacity of the elementary volume vanishes as a natural outcome of ligament size reduction. Moreover, the drop in the macroscopic stress accompanying coalescence can be quantified for many initial microstructures provided that the microstructure state is known at incipient coalescence. The second part of the paper addresses a more practical issue, that is the prediction of the acceleration rate δ in the Tvergaard-Needleman phenomenological approach to coalescence. For that purpose, a Gurson-like model including void shape effects is used. Results are presented and discussed in the limiting case of a non-hardening material for different initial microstructures and various stress states. Predicted values of δ are extremely sensitive to stress triaxiality and initial spacing ratio. The effect of initial porosity is significant at low triaxiality whereas the effect of initial void shape is emphasized at high triaxiality.  相似文献   

14.
Plastic constitutive relations are derived for a class of anisotropic porous materials consisting of coaxial spheroidal voids, arbitrarily oriented relative to the embedding orthotropic matrix. The derivations are based on nonlinear homogenization, limit analysis and micromechanics. A variational principle is formulated for the yield criterion of the effective medium and specialized to a spheroidal representative volume element containing a confocal spheroidal void and subjected to uniform boundary deformation. To obtain closed form equations for the effective yield locus, approximations are introduced in the limit-analysis based on a restricted set of admissible microscopic velocity fields. Evolution laws are also derived for the microstructure, defined in terms of void volume fraction, aspect ratio and orientation, using material incompressibility and Eshelby-like concentration tensors. The new yield criterion is an extension of the well known isotropic Gurson model. It also extends previous analyses of uncoupled effects of void shape and material anisotropy on the effective plastic behavior of solids containing voids. Preliminary comparisons with finite element calculations of voided cells show that the model captures non-trivial effects of anisotropy heretofore not picked up by void growth models.  相似文献   

15.
16.
In order to model the effects of grain boundaries in polycrystalline materials we have coupled a crystal-plasticity model for the grain interiors with a new elastic-plastic grain-boundary interface model which accounts for both reversible elastic, as well irreversible inelastic sliding-separation deformations at the grain boundaries prior to failure. We have used this new computational capability to study the deformation and fracture response of nanocrystalline nickel. The results from the simulations reflect the macroscopic experimentally observed tensile stress-strain curves, and the dominant microstructural fracture mechanisms in this material. The macroscopically observed nonlinearity in the stress-strain response is mainly due to the inelastic response of the grain boundaries. Plastic deformation in the interior of the grains prior to the formation of grain-boundary cracks was rarely observed. The stress concentrations at the tips of the distributed grain-boundary cracks, and at grain-boundary triple junctions, cause a limited amount of plastic deformation in the high-strength grain interiors. The competition of grain-boundary deformation with that in the grain interiors determines the observed macroscopic stress-strain response, and the overall ductility. In nanocrystalline nickel, the high-yield strength of the grain interiors and relatively weaker grain-boundary interfaces account for the low ductility of this material in tension.  相似文献   

17.
In this work, we develop a physically-based crystal plasticity model for the prediction of cyclic tension–compression deformation of multi-phase materials, specifically dual-phase (DP) steels. The model is elasto–plastic in nature and integrates a hardening law based on statistically stored dislocation density, localized hardening due to geometrically necessary dislocations (GNDs), slip-system-level kinematic backstresses, and annihilation of dislocations. The model further features a two level homogenization scheme where the first level is the overall response of a two-phase polycrystalline aggregate and the second level is the homogenized response of the martensite polycrystalline regions. The model is applied to simulate a cyclic tension–compression–tension deformation behavior of DP590 steel sheets. From experiments, we observe that the material exhibits a typical decreasing hardening rate during forward loading, followed by a linear and then a non-linear unloading upon the load reversal, the Bauschinger effect, and changes in hardening rate during strain reversals. To predict these effects, we identify the model parameters using a portion of the measured data and validate and verify them using the remaining data. The developed model is capable of predicting all the particular features of the cyclic deformation of DP590 steel, with great accuracy. From the predictions, we infer and discuss the effects of GNDs, the backstresses, dislocation annihilation, and the two-level homogenization scheme on capturing the cyclic deformation behavior of the material.  相似文献   

18.
State of the art ductile fracture models often rely on simple power laws to describe the strain hardening of the matrix material. Power laws do not distinguish between the two main stages of hardening observed in polycrystals, referred to as stage III and stage IV hardening, and which emerge from the evolution of the dislocation substructure. The aim of this study is to couple a physics based strain hardening law including these two stages to a micromechanics based ductile damage model. One of the main motivations is that, the stage IV constant hardening rate stage, occurring only at large strain, will be attained in most ductile failure problems if not at the overall level of deformation, at least locally around the growing voids. Furthermore, proper modelling of the stage III involving dislocation storage and recovery terms and the transition to stage IV provides a link with the underlying physical mechanisms of deformation and with the microstructure. First, in order to evaluate the effects of the stage III and stage IV hardening on void growth and coalescence, an extensive parametric study is performed on two-dimensional (2D) axisymmetric finite element (FE) unit cell calculations, using a Kocks-Mecking type hardening law. The cell calculations demonstrate that accounting for the stage IV hardening can have a profound effect on delaying void coalescence and increasing the ductility. The magnitude of the recovery term during stage III has also a significant effect on the void growth rate. Then, the Kocks-Mecking law is incorporated into the Gologanu-Leblond-Devaux (GLD) porous plasticity model supplemented by two different versions of the Thomason void coalescence criterion. The predictions of the damage model are in good agreement with the results of the FE calculations in terms of the stress-strain curves, the evolution of void shape and porosity, as well as the strain value at the onset of void coalescence.  相似文献   

19.
The combined effects of void shape and matrix anisotropy on the macroscopic response of ductile porous solids is investigated. The Gologanu–Leblond–Devaux’s (GLD) analysis of an rigid-ideal plastic (von Mises) spheroidal volume containing a confocal spheroidal cavity loaded axisymmetrically is extended to the case when the matrix is anisotropic (obeying Hill’s [Hill, R., 1948. A theory of yielding and plastic flow of anisotropic solids. Proc. Roy. Soc. London A 193, 281–297] anisotropic yield criterion) and the representative volume element is subjected to arbitrary deformation. To derive the overall anisotropic yield criterion, a limit analysis approach is used. Conditions of homogeneous boundary strain rate are imposed on every ellipsoidal confocal with the cavity. A two-field trial velocity satisfying these boundary conditions are considered. It is shown that for cylindrical and spherical void geometries, the proposed criterion reduces to existing anisotropic Gurson-like yield criteria. Furthermore, it is shown that for the case when the matrix is considered isotropic, the new results provide a rigorous generalization to the GLD model. Finally, the accuracy of the proposed approximate yield criterion for plastic anisotropic media containing non-spherical voids is assessed through comparison with numerical results.  相似文献   

20.
A Finite element analysis has been employed to investigate the growth of an initially spherical void embedded in a cylinder of elastic-plastic material. The boundary displacement of this cylindrical cell is regulated by the value of a parameter α which controls the radial shrinkage of the cell as it elongates. A large strain analysis was used and results for both strain hardening and strain softening (after an appropriate amount of hardening has taken place) have been obtained. The effects of different mean tensile stresses, equivalent strains and initial void volume fractions have also been included. The numerical work shows relationships between the mechanical and geometrical variables that may favour ductile fracture by void coalescence or by shear decohesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号