首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Existing cohesive zone models assume that actual fracture zone of non-zero mass can be modeled by a line segment (cohesive zone) with no mass and inertia. In the present work, a simplified mass-spring model is presented to study inertia effect of cohesive zone on a mode-I steady-state moving crack. It is showed that fracture energy predicted by the present model increases dramatically when a finite limiting crack speed is approached. Reasonable agreement with known experiments indicates that the present model has the potential to catch the inertia effect of cohesive zone which has been ignored in existing cohesive zone models and better simulate dynamic fracture at high crack speed.  相似文献   

2.
3.
A simple, mode-mixity dependent toughness cohesive zone model (MDGc CZM) is described. This phenomenological cohesive zone model has two elements. Mode I energy dissipation is defined by a traction–separation relationship that depends only on normal separation. Mode II (III) dissipation is generated by shear yielding and slip in the cohesive surface elements that lie in front of the region where mode I separation (softening) occurs. The nature of predictions made by analyses that use the MDGc CZM is illustrated by considering the classic problem of an elastic layer loaded by rigid grips. This geometry, which models a thin adhesive bond with a long interfacial edge crack, is similar to that which has been used to measure the dependence of interfacial toughness on crack-tip mode-mixity. The calculated effective toughness vs. applied mode-mixity relationships all display a strong dependence on applied mode-mixity with the effective toughness increasing rapidly with the magnitude of the mode-mixity. The calculated relationships also show a pronounced asymmetry with respect to the applied mode-mixity. This dependence is similar to that observed experimentally, and calculated results for a glass/epoxy interface are in good agreement with published data that was generated using a test specimen of the same type as analyzed here.  相似文献   

4.
A thermo-mechanical cohesive zone formulation for ductile fracture   总被引:1,自引:0,他引:1  
The paper addresses the possibility to project both mechanical and thermal phenomena pertinent to the fracture process zone into a cohesive zone. A wider interpretation of the notion cohesive zone is thereby suggested to comprise not only stress degradation due to micro-cracking but also heat generation and energy transport. According to our experience, this widening of the cohesive zone concept allows for a more efficient finite element simulation of ductile fracture. The key feature of the formulation concerns the thermo-mechanical cohesive zone model, evolving within the thermo-hyperelastoplastic continuum, allowing for the concurrent modelling of both heat generation, due to the fracture process, and heat transfer across the fracture process zone. This is accomplished via thermodynamic arguments to obtain the coupled governing equation of motion, energy equation, and constitutive equations. The deformation map is thereby defined in terms of independent continuous and discontinuous portions of the displacement field. In addition, as an extension of the displacement kinematics, to represent the temperature field associated with the discontinuous heat flux across the fracture interface, a matching discontinuous temperature field involving the interface (or band) temperature is proposed. In the first numerical example, concerning dynamic quasi-brittle crack propagation in a thermo-hyperelastoplastic material, we capture the initial increase in temperature close to the crack surface due to the energy dissipating fracture process. In the second example, a novel application of ductile fracture simulation to the process of high velocity (adiabatic) cutting is considered, where some general trends are observed when varying the cutting velocity.  相似文献   

5.
The steady-state dynamic propagation of a crack in a heat conducting elastic body is numerically simulated. Specifically, a mode III semi-infinite crack with a nonlinear temperature dependent cohesive zone is assumed to be moving in an unbounded homogeneous linear thermoelastic continuum. The numerical results are obtained via a semi-analytical technique based on complex variables and integral transforms. The relation between the thermo-mechanical properties of the failure zone and the resulting crack growth regime are investigated. The results show that temperature dependent solutions are substantially different from purely mechanical ones in that their existence and stability strongly depends on the cohesive zone thermal properties.  相似文献   

6.
A traction-displacement relationship that may be embedded into a cohesive zone model for microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics (MD) simulations. An MD model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat Σ99 [1 1 0] symmetric tilt grain boundary in aluminum. Under hydrostatic tensile load, the simulation reveals asymmetric crack propagation in the two opposite directions along the grain boundary. In one direction, the crack propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the other direction, the propagation is ductile through the mechanism of deformation twinning. This behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while the stress field around the brittle crack tip follows the expected elastic solution for the given boundary conditions of the model, the stress field around the twinning crack tip has a strong plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element—an atomistic analog to a continuum cohesive zone model element—the results from the MD simulation are recast to obtain an average continuum traction-displacement relationship to represent cohesive zone interaction along a characteristic length of the grain boundary interface for the cases of ductile and brittle decohesion.  相似文献   

7.
Inverse analysis is widely applied to the identification of material properties or model parameters. In order to improve the computational efficiency of the inverse method based on the genetic algorithm, an interpolation scheme upon the response surface constructed by the finite element simulation has been adopted in this paper. Meanwhile, a gradual homogenization treatment scheme has also been presented to improve the convergence of the inverse method based on the Kalman filter algorithm. Both methods are proven effective in dealing with the single-objective inverse problem. However, literature studies show that the adoption of multiple types of experimental information is useful to improve the accuracy of inverse analysis. In this case, it turns into a multiple-objective inverse problem. Our practice proved that the above-mentioned two methods might not yield a proper result if the sensitivity issue of different types of information is not considered. Therefore, another multi-objective inverse method, in combination of the above two optimization algorithms and a weight-estimating scheme that can consider such sensitivity, has been further presented. Finally, by using a mixed-mode crack propagation simulation and two types of experimental information (loading-displacement response curve and crack path profile), the parameters of the cohesive zone model were inversely identified and its simulation results are in good agreement with the experiment.  相似文献   

8.
The heat generated from dissipative mechanisms during shearing and opening dominated dynamic fracture of polymethyl methacrylate and polycarbonate was measured with a remote sensing technique that utilizes the detection of infrared radiation. Significant heating was detected for both materials and both modes of fracture. In the shear dominated experiments, the temperature increase at the crack tip in polymethyl methacrylate was 85 K, the approximate increase necessary to reach the glass transition temperature. An adiabatic shear band followed by a dynamically propagating crack were observed during the shear dominated experiments using polycarbonate. The recorded shear band temperature increase was 45 K. This was followed by an additional 100 K temperature increase from the ensuing crack, raising the temperature above glass transition. The maximum temperature increase recorded for the opening mode experiments was 55 K for polymethyl methacrylate and 105 K for polycarbonate. The results of this study show that temperature effects are significant during the dynamic fracture of polymers. The effects are especially important in the shear dominated case where local temperatures approach or exceed the polymer glass transition temperature.  相似文献   

9.
A damage accumulation model for shear fatigue of asphalt-stone adhesion was developed with the aid of experimental data obtained from monotonic and dynamic force-controlled tests. Constant static- and stress-rate monotonic tests and cyclic fatigue tests were performed on the special designed specimens of double-layered-sandwich using dynamic thermal mechanics analyzer. Experimental results showed that it was feasible to describe monotonic and cyclic tests of stress-controlled mode using one single damage accumulation model based on stress–time path, which makes it possible to reduce the number of specimens tested and time-consuming fatigue tests are no longer necessary, since the same information can be obtained from monotonic test data without loss of accuracy. It also found that the bonding fracture in shear mainly attributes to cohesive failure through binder interlayer due to extensive creep deformation.  相似文献   

10.
A refined solution of the elastoplastic problem of an insulated mode I crack in a thin plate of reasonably large dimensions is obtained. Estimates of the plastic zone in the vicinity of the crack tip are given for quasiviscous and viscous types of fracture.Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 1, pp. 126–132, January–February, 2005  相似文献   

11.
This contribution covers the development and validation of a microelastic model for wood, based on a four-step homogenization scheme. At a length scale of several tens of nanometers, hemicellulose, lignin, and water are intimately mixed, and build up a polymer (polycrystal-type) network. At a length scale of around one micron, fiberlike aggregates of crystalline and amorphous cellulose are embedded in an contiguous polymer matrix, constituting the so-called cell wall material. At a length scale of about one hundred microns, the material softwood is defined, comprising cylindrical pores (lumen) in the cell wall material of the preceding homogenization step. Finally, at a length scale of several millimeters, hardwood comprises larger cylindrical pores (vessels) embedded in the softwood-type material homogenized before. Model validation rests on statistically and physically independent experiments: The macroscopic stiffness values (of hardwood or softwood) predicted by the micromechanical model on the basis of tissue-independent (‘universal’) phase stiffness properties of hemicellulose, amorphous cellulose, crystalline cellulose, lignin, and water (experimental set I) for tissue-specific composition data (experimental set IIb) are compared to corresponding experimentally determined tissue-specific stiffness values (experimental set IIa).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号