首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding sub-Rayleigh-to-intersonic transition of mode II cracks is a fundamental problem in fracture mechanics with important practical implications for earthquake dynamics and seismic radiation. In the Burridge-Andrews mechanism, an intersonic daughter crack nucleates, for sufficiently high prestress, at the shear stress peak traveling with the shear wave speed in front of the main crack. We find that sub-Rayleigh-to-intersonic transition and sustained intersonic propagation occurs in a number of other models that subject developing cracks to intersonic loading fields. We consider a spontaneously expanding sub-Rayleigh crack (or main crack) which advances, along a planar interface with linear slip-weakening friction, towards a place of favorable heterogeneity, such as a preexisting subcritical crack or a small patch of higher prestress (similar behavior is expected for a small patch of lower static strength). For a range of model parameters, a secondary dynamic crack nucleates at the heterogeneity and acquires intersonic speeds due to the intersonic stress field propagating in front of the main crack. Transition to intersonic speeds occurs directly at the tip of the secondary crack, with the tip accelerating rapidly to values numerically equal to the Rayleigh wave speed and then abruptly jumping to an intersonic speed. Models with favorable heterogeneity achieve intersonic transition and propagation for much lower prestress levels than the ones implied by the Burridge-Andrews mechanism and have transition distances that depend on the position of heterogeneity. We investigate the dependence of intersonic transition and subsequent crack propagation on model parameters and discuss implications for earthquake dynamics.  相似文献   

2.
A recent experimental study has demonstrated the attainability of intersonic shear crack growth along weak planes in otherwise homogeneous, isotropic, linear elastic solids subjected to remote loading conditions (Rosakis et al., Science 284 (5418) (1999) 1337). The relevant experimental observations are summarized briefly here and the conditions governing the attainment of intersonic crack speeds are examined. Motivated by experimental observations, subsonic and intersonic mode II crack propagation with a rate-dependent cohesive zone is subsequently analyzed. A cohesive law is assumed, wherein the cohesive shear traction is either a constant or varies linearly with the local sliding rate. Complete decohesion is assumed to occur when the crack tip sliding displacement reaches a material-specific critical value. Closed form expressions are obtained for the near-tip fields. With a cohesive zone of finite size, it is found that the dynamic energy release rate is finite through out the intersonic regime. Crack tip stability issues are addressed and favorable speed regimes are identified. The influence of shear strength of the crack plane and of a rate parameter on crack propagation behavior is also investigated. The isochromatic fringe patterns predicted by the analytical solution are compared with the experimental observations of Rosakis et al. (1999) and comments are made on the validity of the proposed model.  相似文献   

3.
The mechanics of cohesive failure under mixed-mode loading is investigated for the case of a steadily propagating subsonic and intersonic dynamic crack subjected to a follower tensile and shear distributed load. The cohesive failure model chosen in this study is rate independent but accounts for the coupling between normal and tangential damage. Special emphasis is placed here on mixed-mode cases with predominantly shear loading. The analysis shows that the size of the mixed-mode cohesive zone is smaller than that obtained in the pure shear case. The relative extent of the shear and tensile cohesive damage zones depends on the crack speed and the mode mixity. In the intersonic regime, the failure process takes place exclusively in shear, even under remote mixed-mode loading conditions.  相似文献   

4.
5.
In an earlier study on intersonic crack propagation, Gao et al. (J. Mech. Phys. Solids 49: 2113–2132, 2001) described molecular dynamics simulations and continuum analysis of the dynamic behaviors of a mode II dominated crack moving along a weak plane under a constant loading rate. The crack was observed to initiate its motion at a critical time after the onset of loading, at which it is rapidly accelerated to the Rayleigh wave speed and propagates at this speed for a finite time interval until an intersonic daughter crack is nucleated at a peak stress at a finite distance ahead of the original crack tip. The present article aims to analyze this behavior for a mode III crack moving along a bi-material interface subject to a constant loading rate. We begin with a crack in an initially stress-free bi-material subject to a steadily increasing stress. The crack initiates its motion at a critical time governed by the Griffith criterion. After crack initiation, two scenarios of crack propagation are investigated: the first one is that the crack moves at a constant subsonic velocity; the second one is that the crack moves at the lower shear wave speed of the two materials. In the first scenario, the shear stress ahead of the crack tip is singular with exponent ?1/2, as expected; in the second scenario, the stress singularity vanishes but a peak stress is found to emerge at a distance ahead of the moving crack tip. In the latter case, a daughter crack supersonic with respect to the softer medium can be expected to emerge ahead of the initial crack once the peak stress reaches the cohesive strength of the interface.  相似文献   

6.
The problem investigated in this paper is a mode II crack extending at a uniform intersonic speed in an otherwise unbounded elastic solid subjected to time dependent crack-face tractions. The fundamental solution for this problem is obtained analytically, which is then used to construct the general solution for an intersonic crack subjected to arbitrary time-dependent loading. For time-independent loading, this solution reduces to Huang and Gao’s [J. Appl. Mech 68 (2001) 169] fundamental solution. We have also studied two crack-face loadings that are of interest for engineering applications.  相似文献   

7.
The dynamic propagation of a bifurcated crack under antiplane loading is considered. The dependence of the stress intensity factor just after branching is given as a function of the stress intensity factor just before branching, the branching angle and the instantaneous velocity of the crack tip. The jump in the dynamic energy release rate due to the branching process is also computed. Similar to the single crack case, a growth criterion for a branched crack is applied. It is based on the equality between the energy flux into each propagating tip and the surface energy which is added as a result of this propagation. It is shown that the minimum speed of the initial single crack which allows branching is equal to 0.39c, where c is the shear wave speed. At the branching threshold, the corresponding bifurcated cracks start their propagation at a vanishing speed with a branching angle of approximately 40°.  相似文献   

8.
We develop a general solution method for a dynamically accelerating crack under anti-plane shear conditions along the interface between two different homogeneous isotropic elastic materials. The crack is initially at rest, and after loading is applied the crack-tip speed which may accelerate up to the shear wave speed of the more compliant material. The analysis includes an exact, closed-form expression for the stress intensity factor for an arbitrary time-dependent crack-face traction, as well as expressions for computing the crack-face displacements and the stress in front of the crack. We also present some numerical examples for fixed loads and for loads moving with the crack tip, using a stress intensity factor fracture criterion, in order to examine the predicted effect of material mismatch on interfacial fracture.  相似文献   

9.
This paper is concerned with the propagation of a crack along the interface of a piezoelectric bimaterial, which can travel at subsonic or intersonic speed. The inertial effects are taken into account while the static approximation is applied to the electric fields. The effect of piezoelectricity on the asymptotic crack-tip field is discussed for an interface crack propagating subsonically and intersonically. An alternative method is used to avoid solving for the eigenvectors. This paper provides a unified method to analyze the crack-tip field of a crack propagating along a piezoelectric bimaterial interface.  相似文献   

10.
Dynamic crack growth along a polymer composite-Homalite interface   总被引:1,自引:0,他引:1  
Dynamic crack growth along the interface of a fiber-reinforced polymer composite-Homalite bimaterial subjected to impact shear loading is investigated experimentally and numerically. In the experiments, the polymer composite-Homalite specimens are impacted with a projectile causing shear dominated interfacial cracks to initiate and subsequently grow along the interface at speeds faster than the shear wave speed of Homalite. Crack growth is observed using dynamic photoelasticity in conjunction with high-speed photography. The calculations are carried out for a plane stress model of the experimental configuration and are based on a cohesive surface formulation that allows crack growth, when it occurs, to emerge as a natural outcome of the deformation history. The effect of impact velocity and loading rate is explored numerically. The experiments and calculations are consistent in identifying discrete crack speed regimes within which crack growth at sustained crack speeds is possible. We present the first conclusive experimental evidence of interfacial crack speeds faster than any characteristic elastic wave speed of the more compliant material. The occurrence of this crack speed was predicted numerically and the calculations were used to design the experiments. In addition, the first experimental observation of a mother-daughter crack mechanism allowing a subsonic crack to evolve into an intersonic crack is documented. The calculations exhibit all the crack growth regimes seen in the experiments and, in addition, predict a regime with a pulse-like traction distribution along the bond line.  相似文献   

11.
We investigate the linearized response of two elastic half-spaces sliding past one another with constant Coulomb friction to small three-dimensional perturbations. Starting with the assumption that friction always opposes slip velocity, we derive a set of linearized boundary conditions relating perturbations of shear traction to slip velocity. Friction introduces an effective viscosity transverse to the direction of the original sliding, but offers no additional resistance to slip aligned with the original sliding direction. The amplitude of transverse slip depends on a nondimensional parameter η=csτ0/μv0, where τ0 is the initial shear stress, 2v0 is the initial slip velocity, μ is the shear modulus, and cs is the shear wave speed. As η→0, the transverse shear traction becomes negligible, and we find an azimuthally symmetric Rayleigh wave trapped along the interface. As η→∞, the inplane and antiplane wavesystems frictionally couple into an interface wave with a velocity that is directionally dependent, increasing from the Rayleigh speed in the direction of initial sliding up to the shear wave speed in the transverse direction. Except in these frictional limits and the specialization to two-dimensional inplane geometry, the interface waves are dissipative. In addition to forward and backward propagating interface waves, we find that for η>1, a third solution to the dispersion relation appears, corresponding to a damped standing wave mode. For large-amplitude perturbations, the interface becomes isotropically dissipative. The behavior resembles the frictionless response in the extremely strong perturbation limit, except that the waves are damped. We extend the linearized analysis by presenting analytical solutions for the transient response of the medium to both line and point sources on the interface. The resulting self-similar slip pulses consist of the interface waves and head waves, and help explain the transmission of forces across fracture surfaces. Furthermore, we suggest that the η→∞ limit describes the sliding interface behind the crack edge for shear fracture problems in which the absolute level of sliding friction is much larger than any interfacial stress changes.  相似文献   

12.
An anisotropic cohesive model of fracture is applied to the numerical simulation of Coker and Rosakis experiments (2001). In these experiments, a unidirectional graphite–epoxy composites plate was impacted with a projectile, resulting in an intersonic shear-dominated crack growth. The simulations account for explicit crack nucleation––through a self-adaptive remeshing procedure––crack closure and frictional sliding. The parameters used in the cohesive model are obtained from quasi-static fracture experiments, and successfully predict the dynamic fracture behavior. In keeping with the experiments, the calculations indicate that there is a preferred intersonic speed for locally steady-state growth of dynamic shear cracks, provided that sufficient energy is supplied to the crack tip. The calculations also show that the crack tip can attain speeds in the vicinity of the longitudinal wave speed in the direction of the fibers, if impacted at higher speeds. In addition, a double-shock which emanates from a finite size contact region behind the crack tip is observed in the simulations. The predicted double-shock structure of the near-tip fields is in close agreement with the experimental observations. The calculations additionally predict the presence of a string of surface hot spots which arise following the passage of the crack tip. The observed and computed hot spot structures agree both in geometry as well as in the magnitude of the temperature elevation. The analysis thus suggests intermittent friction as the origin of the experimentally observed hot spots.  相似文献   

13.
Propagation of a semi-infinite crack along the interface between an elastic half-plane and a rigid half-plane is analyzed. The crack advances at constant subsonic speed. It is assumed that, ahead of the crack, there is a finite segment where the conditions of Coulomb friction law are satisfied. The contact zone of unknown a priori length propagates with the same speed as the crack. The problem reduces to a vector Riemann–Hilbert problem with a piece-wise constant matrix coefficient discontinuous at three points, 0, 1, and ∞. The problem is solved exactly in terms of Kummer's solutions of the associated hypergeometric differential equation. Numerical results are reported for the length of the contact friction zone, the stress singularity factor, the normal displacement u2, and the dynamic energy release rate G. It is found that in the case of frictionless contact for both the sub-Rayleigh and super-Rayleigh regimes, G is positive and the stress intensity factor KII does not vanish. In the sub-Rayleigh case, the normal displacement is positive everywhere in the opening zone. In the super-Rayleigh regime, there is a small neighborhood of the ending point of the open zone where the normal displacement is negative.  相似文献   

14.
We present a new method for determining the elasto-dynamic stress fields associated with the propagation of anti-plane kinked or branched cracks. Our approach allows the exact calculation of the corresponding dynamic stress intensity factors. The latter are very important quantities in dynamic brittle fracture mechanics, since they determine the crack path and eventual branching instabilities. As a first illustration, we consider a semi-infinite anti-plane straight crack, initially propagating at a given time-dependent velocity, that changes instantaneously both its direction and its speed of propagation. We will give the explicit dependence of the stress intensity factor just after kinking as a function of the stress intensity factor just before kinking, the kinking angle and the instantaneous velocity of the crack tip.  相似文献   

15.
Molecular dynamics simulation of crack-tip processes in copper   总被引:1,自引:0,他引:1  
The crack tip processes in copper under mode II loading have been simulated by a molecular dynamics method. The nucleation, emission, dislocation free zone (DFZ) and pile-up of the dislocations are analyzed by using a suitable atom lattice configuration and Finnis & Sinclair potential. The simulated results show that the dislocation emitted always exhibits a dissociated fashion. The stress intensity factor for dislocation nucleation, DFZ and dissociated width of partial dislocations are strongly dependent on the loading rate. The stress distributions are in agreement with the elasticity solution before the dislocation emission, but are not in agreement after the emission. The dislocation can move at subsonic wave speed (less than the shear wave speed) or at transonic speed (greater than the shear wave speed but less than the longitudinal wave speed), but at the longitudinal wave speed the atom lattice breaks down. The project supported by the National Natural Science Foundation of China  相似文献   

16.
The plastic zone of the growing mode III crack in an elastic perfectly plastic solid consists of two sectors in contact with each other. The sector closer to the crack plane, first studied analytically by Chitaley and McClintock (CM), consists of a fan of straight maximum shear stress trajectories that are focused on the crack tip. The other sector, first analyzed numerically by Dean and Hutchinson (DH), is a ‘radial’ fan of straight lines that are not focused at the crack tip or at another common point. In this paper it is shown with use of the dislocation density field that the need that the stress magnitude in the plastic wake be below the yield stress requires the existence of an unfocused fan in the DH sector. It appears unlikely that this result can be obtained without explicit use of dislocations.  相似文献   

17.
Dynamic stability of a propagating crack   总被引:2,自引:0,他引:2  
In this work we investigate the stability of a straight two-dimensional dynamically propagating crack to small perturbation of its path. Willis and Movchan (J. Mech. Phys. Solids 43 (1995) 319; J. Mech. Phys. Solids 45 (1997) 591) constructed formulae for the perturbations of the stress intensity factors induced by a small three-dimensional dynamic perturbation of a nominally plane crack. Their solution is exploited here to derive equations for the in-plane and out-of-plane perturbations of the crack path making use of the Griffith fracture criterion and the principle of “local symmetry” (i.e the crack propagates so that local KII=0). We consider a crack propagating in a body loaded by a pair of point body forces and subjected to a remote uniaxial stress, aligned with the direction of the unperturbed crack. We assume that the loading follows the crack as the crack advances and is such that the unperturbed crack is subjected to Mode I loading. We perform an analysis of the stability of the dynamic crack in a similar way as in earlier work (Obrezanova et al., J. Mech. Phys. Solids 50 (2002) 57) on the quasistatically advancing crack. We present numerical results illustrating the influence of the crack velocity on the crack stability. Numerical computations of the possible crack paths have been performed which show that at velocities of crack propagation exceeding about one-third of the speed of Rayleigh waves the crack may admit one or more oscillatory modes of instability.  相似文献   

18.
We examine the deflection/penetration behavior of dynamic mode-I cracks propagating at various speeds towards inclined weak planes/interfaces of various strengths in otherwise homogeneous isotropic plates. A dynamic wedge-loading mechanism is used to control the incoming crack speeds, and high-speed photography and dynamic photoelasticity are used to observe, in real-time, the failure mode transition mechanism at the interfaces. Simple dynamic fracture mechanics concepts used in conjunction with a postulated energy criterion are applied to examine the crack deflection/penetration behavior and, for the case of interfacial deflection, to predict the crack tip speed of the deflected crack. It is found that if the interfacial angle and strength are such as to trap an incident dynamic mode-I crack within the interface, a failure mode transition occurs. This transition is characterized by a distinct, observable and predicted speed jump as well as a dramatic crack speed increase as the crack transitions from a purely mode-I crack to an unstable mixed-mode interfacial crack.  相似文献   

19.
On the fracture toughness of ferroelastic materials   总被引:2,自引:0,他引:2  
The toughness enhancement due to domain switching near a steadily growing crack in a ferroelastic material is analyzed. The constitutive response of the material is taken to be characteristic of a polycrystalline sample assembled from randomly oriented tetragonal single crystal grains. The constitutive law accounts for the strain saturation, asymmetry in tension versus compression, Bauschinger effects, reverse switching, and strain reorientation that can occur in these materials due to the non-proportional loading that arises near a propagating crack. Crack growth is assumed to proceed at a critical level of the crack tip energy release rate. Detailed finite element calculations are carried out to determine the stress and strain fields near the growing tip, and the ratio of the far field applied energy release rate to the crack tip energy release rate. The results of the finite element calculations are then compared to analytical models that assume the linear isotropic K-field solution holds for either the near tip stress or strain field. Ultimately, the model is able to account for the experimentally observed toughness enhancement in ferroelastic ceramics.  相似文献   

20.
A nonuniform crack growth problem is considered for a homogeneous isotropic elastic medium subjected to the action of remote oscillatory and static loads. In the case of a plane problem, the former results in Rayleigh waves propagating toward the crack tip. For the antiplane problem the shear waves play a similar role. Under the considered conditions the crack cannot move uniformly, and if the static prestress is not sufficiently high, the crack moves interruptedly. For fracture modes I and II the established, crack speed periodic regimes are examined. For mode III a complete transient solution is derived with the periodic regime as an asymptote. Examples of the crack motion are presented. The crack speed time-period and the time-averaged crack speeds are found. The ratio of the fracture energy to the energy carried by the Rayleigh wave is derived. An issue concerning two equivalent forms of the general solution is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号