首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical properties of a hard and stiff W-C coating on steel substrate have been investigated using nanoindentation combined with finite element modeling (FEM) and extended FEM (XFEM). The significant pile-up observed around the indents in steel substrate caused an overestimation of hardness and indentation modulus. A simple geometrical model, considering the additional contact surfaces due to pile-up, has been proposed to reduce this overestimation. The presence of W-C coating suppressed the pile-up in the steel substrate and a transition to sink-in behavior occurred. The FEM simulations adequately reproduced the surface topography of the indents in the substrate and coating/substrate systems as well. The maximum principal stresses of the indented W-C/steel coated system were tensile; they were always located in the coating and evolved in 3 stages. Cohesive cracking occurred during loading in the sink-in zone (stage III) when the ultimate tensile strength (σ max ) of the coating was reached. The obtained hardness (H c ), indentation modulus (E c ), yield stress (Y) and strength (σ max ) of the W-C coating were H c ? =?20 GPa, E c ? =?250 GPa, Y?=?9.0 GPa and σ max ? =?9.35 GPa, respectively. XFEM resulted in fracture energy of the W-C coating of G?=?38.1 J?·?m-2 and fracture toughness of K IC ? =?3.5 MPa?·?m0.5.  相似文献   

2.
Polymeric adhesives sandwiched between two elastic substrates are commonly found in multi-layers and IC packages. The non-elastic deformation and flow stress of such adhesive joints are highly pressure-sensitive. In this work, we study the effects of pressure-sensitivity, α, and plastic dilatancy, β, on void growth and coalescence ahead of a crack in ductile adhesive joints. To this end, a single layer of discrete voids is placed ahead of the crack in a pressure-sensitive dilatant adhesive sandwiched between two elastic substrates. The adhesive joint is subjected to small-scale yielding conditions. Using an associated flow rule (α = β), we show that pressure-sensitivity not only intensifies damage levels but also increases its spatial extent several fold. The damage level as well as its spatial extent is found to be even greater when a non-associated flow rule (β < α) is deployed. A reduction in the damage process zone’s thickness further increases the voiding activity in the adhesive, thereby resulting in brittle-like failure. This work also examines the fracture toughness trends using a material failure criterion for crack growth.  相似文献   

3.
Cohesive zone (CZ) fracture analysis techniques are used to predict the initiation of crack growth from the interface corner of an adhesively bonded butt joint. In this plane strain analysis, a thin linear elastic adhesive layer is sandwiched between rigid adherends. There is no preexisting crack in the problem analyzed, and the focus is on how the shape of the traction–separation (TU) relationship affects the predicted joint strength. Unlike the case of a preexisting interfacial crack, the calculated results clearly indicate that the predicted joint strength depends on the shape of the TU relationship. Most of the calculations used a rectangular TU relationship whose shape (aspect ratio) is defined by two parameters: the interfacial strength σ1 and the work of separation/unit area Γ. The principal finding of this study is that for a specified adhesive layer thickness, there is any number of σ1, Γ combinations that generate the same predicted joint strength. Each combination corresponds to a different CZ length. An approximate CZ-like elasticity solution was developed to show how such combinations arise and their connection with the CZ length.  相似文献   

4.
The process of ductile plate perforation by sharp-nosed rigid projectiles is further examined in this work through 2D numerical simulations. We highlight various features concerning the effective resisting stress (σr) which a finite thickness plate, with a flow stress of Yt, exerts on the projectile during perforation. In particular, we show that the normalized resisting stress (σr/Yt) can be represented as a unique function of the normalized thickness of the plate (H/D, where H is plate thickness and D is projectile diameter), for a large range of normalized thicknesses. Our simulations for very thin target plates show that the penetration process is achieved through the well-known dishing mechanism, where the target material is pushed forward by the projectile’s nose. An important observation, which emerges from our simulations, is that the transition between the dishing and the hole enlargement mechanisms takes place at a normalized thickness of about H/D = 1/3. We also find that the normalized resistive stress for intermediate plate thicknesses, 1/3 < H/D < 1.0, is relatively constant at a value of σr/Yt = 2.0. This range of thicknesses conforms to a state of quasi plane stress in the plates. For thicker plates (H/D > 1) the σr/Yt ratio increases monotonically to values which represent the resistance to penetration of semi-infinite targets, where the stress state is characterized by plane strain conditions. Using a simple model, which is based on energy conservation, we can predict the values of the ballistic limit velocities for many projectile/target combinations, provided the perforation is done through the ductile hole enlargement mechanism. Good agreement is demonstrated between predictions from our model and experimental data from different sources, strongly enhancing the confidence in both the validity and usefulness of our model.  相似文献   

5.
The strain gradient exists near a crack tip may significantly influence the near-tip stress field. In this paper, the strain gradient and the internal length scales are introduced into the basic equations of mode III crack by the modified gradient elasticity (MGE). By using a complex function approach, the analytical solution of stress fields for mode III crack problem is derived within MGE. When the internal length scales vanish, the stress fields can be simplified to the stress fields of classical linear elastic fracture mechanics. The results show that the singularity of the shear stress is made up of two parts, r−1/2 part and r−3/2 part, and the sign of the stress σyz changes. With the increase of lx, the peak value of σyz decrease and its location moves farther from the fracture vertex. The influence of strain gradient for mode III crack problem cannot be ignored.  相似文献   

6.
Using the criterion that a crack will extend perpendicular to the maximum circumferential stress,σ θ, we show that the directional stability of crack growth is governed by the location of microcrack initiation ahead of the crack tip. At distances greater than a geometrical radiusr o, the maximum value ofσ θ deviates from the position of symmetry. Thus, if we assume that the physical processes involved in fracture lead to crack initiation at a distancer c ahead of the crack tip, the criterion for directional stability isr o>r c. Experimental and theoretical values ofr o verify that, asr o becomes small, the crack's directional stability deteriorates. Observing that a lengthwise compressive stress increasesr o, a center-cracked specimen was developed which allows the application of controlled lengthwise compression independently of the opening-mode load. A detailed photoelastic analysis of the specimen has provided the value ofr o as a function of the crack length. The value ofr o is then compared with the expected microcrack initiation distances in ductile fracture. By applying sufficient lengthwise compression, we are able to make the crack grow straight and obtain numerous data points from this specimen which would otherwise be directionally unstable. The results indicate that, as the total lengthwise tensile stress at the crack tip increases, the fracture toughness also increases. Using this information we can then adjustK Ic for zero lengthwise loading and obtain a geometry independent fracture toughness.  相似文献   

7.
In the current work, the boundary layers of an unsteady incompressible stagnation-point flow with mass transfer were further investigated. Similarity transformation technique was used and the similarity equation group was solved using numerical methods. Interesting observation is that there are multiple solutions seen for negative unsteadiness parameters, β. The influences of mass transfer, unsteadiness parameter, and Prandtl numbers on velocity and temperature profiles, wall drag, and wall heat fluxes were investigated and analyzed. The asymptotic behaviors for the similarity equations in limiting situations were theoretically analyzed. It is found that solutions exist for all mass transfer parameters for β≥−1. For a certain mass transfer parameter, there are two solutions when βc<β<0; there is one solution for (β=βc)∪(β≥0); there is no solution for β<βc, where βc is a critical unsteadiness parameter dependent on mass transfer parameter.  相似文献   

8.
We consider the homogenization of a time-dependent heat transfer problem in a highly heteregeneous periodic medium made of two connected components having finite heat capacities cα(x) and heat conductivities aα(x), α=1,2, of order one, separated by a third material with thickness of order ε the size of the basic periodicity cell, but with conductivity λa3(x) where a3=O(1) and λ tends to zero with ε. Assuming only that ci(x)?0 a.e., such that the problem can degenerate (parabolic-elliptic), we identify the homogenized problem following the values of δ=limε→0ε2/λ. To cite this article: M. Mabrouk, A. Boughammoura, C. R. Mecanique 331 (2003).  相似文献   

9.
Experiments have been performed to investigate the icetransition profiles and heat-transfer characteristics for water flows between two horizontal parallel plates. The experiments are carried out under the condition that upper plate is cooled at uniform temperature kept less than freezing temperature of water, while the lower plate is heated at uniform temperature kept higher than the temperature of water flow. The temperatures of the upper and lower plates range from ?8 to ?14°C and from 10 to 60 °C, respectively, with inlet-water temperature varied from 1.5 to 4.5 °C. The cooling and heating temperature ratios, θc and θh, are ranging from 1.78 to 9.33 and from 1.22 to 39, respectively. By using three kinds of heightH of 16, 30 and 40 mm between the horizontal parallel plates, the Reynolds and Grashof numbers are varied from 3.2 × 102 to 1.5 × 104 and from 3.4 × 103 to 8.97 × 106, respectively. As a result of this investigation two ice-transition modes are observed. The first ice-transition mode is due to an interruption of upper and lower thermal boundary layers, while the second mode is due to an instability of laminar boundary layer formed on water-ice interface. In order to determine the kind of ice-transition mode, criterion correlation formulas including the Reynolds numberRe H , Grashof numberGr H , and heating temperature ratio θh are determined and may be written as follows: For thermal icetransition mode (th.I.T.M.)Re H /(Gr H ·θ h )0.23<1.6×10?3 and for hydrodynamical ice-transition mode (hy.I.T.M.)Re H /(Gr H ·θ h )0.23>2.3×10?3 By introducing the freezing parameterB f , correlation equations for local and mean Nusselt numbers along the water-ice interface at steady-state condition are determined. From the current experimental results it is found that the local Nusselt number may be described as the following equation:Nu x =0.835 Re H 0.278 · B f 0.834 ·x/H)?0.139  相似文献   

10.
The characteristics of the stress fields around a singular point on the stress singularity line of dissimilar materials in three-dimensional joints are investigated using BEM. Contour for the order of stress singularity around the point is mapped on Dundurs’ parameters plane using eigen value analysis by FEM. The results in 3D joints are compared with those in 2D joints having the same cross section and material combination. The order of stress singularity around the singular point on the stress singularity line in 3D joints is almost identical with that in 2D joints in the singularity region. However, the zero boundary of singularity in 3D joints is slightly different from that in 2D joints. Furthermore, the multiple root of p = 1 exists in the eigen value analysis by FEM. Therefore, logarithmic singularity possibly occurs around the singular point on the stress singularity line. Then, the stress distributions around this point are expressed by the combination of the rλ term and logarithmic singularity terms. Finally, the characteristics of the stress intensity factors of the rλ term and logarithmic singularity terms around the singular points are investigated.  相似文献   

11.
The propensity of the transition of fracture type in either brittle or ductile cracked solid under mixed-mode I and III loading conditions is investigated. A fracture criterion based on the competition of the maximum normal stress and maximum shear stress is utilized. The prediction of the fracture type is determined by comparing τmax/σmax at a critical distance from the crack tip to the material strength ratio τC/σC, i.e., (τmax/σmax)<(τC/σC) for tensile fracture and (τmax/σmax)>(τC/σC) for shear fracture, where σC (τC) is the fracture strength of materials in tension (shear). Mixed mode I/III fracture tests were performed using circumferentially notched cylindrical bars made of PMMA and 7050 aluminum alloy. Fracture surface morphology of the specimens reveals that: (1) for the brittle material, PMMA, only tensile type of fracture occurs, and (2) for the ductile material, 7050 aluminum alloy, either tensile or shear type of fracture occurs depending on the mode mixity. The transition (in ductile material) or non-transition (in brittle material) of the fracture type and the fracture path observed in experiments were properly predicted by the theory. Additional test data from open literature are also included to validate the proposed theory.  相似文献   

12.
We use previous theoretical results for the added mass, history and lubrication forces between two spheres colliding in a fluid with viscosity ν to investigate the effect of viscous dissipation on the coefficient of restitution during contact. We assume that the mechanical interaction is governed by Hertzian mechanical contact of small duration τ and that the minimum approach distance between particles is approximately equal to the height σ of surface micro-asperities. A non-dimensionalization of the equation of motion indicates that the contact dynamics is governed by two parameters – the ratio ϵ of the surface roughness σ and the sphere radius a, and a contact Stokes number defined as Stc = σ2/ντ. An asymptotic solution of the equation of motion in the limit of small ϵ/Stc is used to obtain an explicit expression for the coefficient of restitution during contact and the latter is compared with estimates based on numerical solutions of the non-linear equation of motion.  相似文献   

13.
Semi-dilute ( $c^\ast < c < c_{\rm e}$ ) as well as concentrated, entangled (c?>?c e) solutions of PEO yield uniformly thinning, cylindrical filaments in capillary breakup extensional rheometry (CaBER) experiments. Up to c?≈ c e thinning can be characterized by a single elongational relaxation time λ E. Comparison with the longest shear relaxation time, λ S reveals that λ E/λ S decreases with increasing concentration or molecular weight according to (c[η])???4/3. This is attributed to the large deformation the solutions experience during filament thinning. A factorable integral model including a single relaxation time and a Soskey or Wagner damping function accounting for the large deformation in CaBER experiments is used to calculate λ E/λ S and provides good agreement with experimental results. Irrespective of concentration or molecular weight a beads-on-a-string structure occurs prior to filament breakup at a diameter ratio D/D 0?≈ 0.01. This instability is supposed to be closely related to a flow-induced phase separation.  相似文献   

14.
If the equation νζζ = λ(ξ)νζ + F(ξ,ν) admits a first integral quadratic in the momentum c., the function F(ξ,ν) is defined; a new procedure is introduced to find the first integral. Among the examples is discussed the existence of quadratic invariants for the equation uλu′ = Q(u), where λ is a constant, and for the equation νξ,ξ =βξσνn. This last equation admits a first integral, quadratic in νξ if σ = 0, or n = −2σ − 3, or n = −σ − 3. Particular eases are exhibited where no invariant quadratic in νξ is found for the equation νξξ = βξσνn but it admits a first integral which is a polynomial of degree 4 or 6 in νξ.  相似文献   

15.
A phenomenological study of parabolic and spherical indentation of elastic ideally plastic materials was carried out by using precise results of finite elements calculations. The study shows that no “pseudo-Hertzian” regime occurs during spherical indentation. As soon as the yield stress of the indented material is exceeded, a deviation from the, purely elastic Hertzian contact behaviour is found. Two elastic–plastic regimes and two plastic regimes are observed for materials of very large Young modulus to Yield stress ratio, E/σy. The first elastic–plastic regime corresponds to a strong evolution of the indented plastic zone. The first plastic regime corresponds to the commonly called “fully plastic regime”, in which the average indentation pressure is constant and equal to about three times the yield stress of the indented material. In this regime, the contact depth to penetration depth ratio tends toward a constant value, i.e. hc/h = 1.47. hc/h is only constant for very low values of yield strain (σy/E lower than 5 × 10?6) when aE1/y is higher than 10,000. The second plastic regime corresponds to a decrease in the average indentation pressure and to a steeper increase in the pile-up. For materials with very large E/σy ratio, the second plastic regime appears when the value of the non-dimensional contact radius a/R is lower than 0.01. In the case of spherical and parabolic indentation, results show that the first plastic regime exists only for elastic-ideally plastic materials having an E/σy ratio higher than approximately 2.000.  相似文献   

16.
In a half-plane problem with x1 paralleling with the straight boundary and x2 pointing into the medium, the stress components on the boundary whose acting plane is perpendicular to x1 direction may be denoted by t1 = [σ11, σ12, σ13]T. Stress components σ11 and σ13 are of more interests since σ12 is completely determined by the boundary conditions. For isotropic materials, it is known that under uniform normal loading σ11 is constant in the loaded region and vanishes in the unloaded part. Under uniform shear loading, σ11 will have a logarithmic singularity at the end points of shear loading. In this paper, the behavior of the stress components σ11 and σ13 induced by traction-discontinuity on general anisotropic elastic surfaces is studied. By analyzing the problem of uniform tractions applied on the half-plane boundary over a finite loaded region, exact expressions of the stress components σ11 and σ13 are obtained which reveal that these components consist of in general a constant term and a logarithmic term in the loaded region, while only a logarithmic term exists in unloaded region. Whether the constant term or the logarithmic term will appear or not completely depends on what values of the elements of matrices Ω and Γ will take for a material under consideration. Elements for both matrices are expressed explicitly in terms of elastic stiffness. Results for monoclinic and orthotropic materials are all deduced. The isotropic material is a special case of the present results.  相似文献   

17.
This paper is devoted to the study of planar deflagration flames. The combustion takes place in a gaseous mixture in which N chemical species B 1,…,B N are subject to a complex chemical network of R chemical reactions: In the limit of zero ignition temperature, existence of traveling waves for any speed in a range [c 0,+∞) is proved for exothermic networks. Non-existence is proved for c∈(0,c *). A new index argument is introduced which is of independent interest. In the case of Lewis number less than 1 and of non-competitive networks, the set of speeds is exactly the interval [c 0,+∞) (c 0?=?c *).  相似文献   

18.
The experimental data on the effect of weak and moderate non-equilibrium adverse pressure gradients (APG) on the parameters of dynamic and thermal boundary layers are presented. The Reynolds number based on the momentum thickness at the beginning of the APG region was Re** = 5500. The APG region was a slot channel with upper wall expansion angles from 0 to 14°. The profiles of the mean and fluctuation velocity components were measured using a single-component hot-wire anemometer. The friction coefficients were determined using two methods, namely, the indirect Clauser method and the direct method of weighting the lower wall region on a single-component strain-gage balance. The heat transfer coefficients were determined by a transient method using an IR camera. It is noticed that in the pressure gradient range realized the universal logarithmic region in the boundary layer profile is conserved. The values of the relative (divided by the parameters in zero gradient flow at the same value of Re**) friction and heat transfer coefficients, together with the Reynolds analogy factor, are determined as functions of the longitudinal pressure gradient. The values of the relative friction coefficient reduced to cf/cf0 = 0.7 and those of the heat transfer to St/St0 = 0.9. A maximum value of the Reynolds analogy factor (St/St0)/(cf/cf0) = 1.16 was reached for the pressure gradient parameter β = 2.9.  相似文献   

19.
This paper proposes a strength reliability model based on a Markov process for unidirectional composites with fibers in a hexagonal array. The model assumes that a group of fiber breaking points, a so-called cluster, evolves with increased stress. The cluster evolution process branches because of various fiber-breakage paths. Load-sharing structure of intact fibers around clusters was estimated from geometric and mechanical local load-sharing rules. Composites fracture if a cluster achieves a critical size, so the model expresses a fracture criterion by setting an absorbing state. Next, the author constituted a state transition diagram concerning cluster evolutions of 1-fiber to 7-fiber breaks and analytically solved simultaneous differential equations obtained from the diagram. Results showed that, as critical cluster size increases, slope of the fracture probability distribution is given in a Weibull probability scale as follows: mc=i×mf (i, the number of broken fibers in a cluster; mc and mf, Weibull shape parameters for fracture probabilities of a critical cluster and fiber strength, respectively). This relation between mc and mf had been shown by Smith et al. [Proc. R. Soc. London, A 388 (1983) 353–391], but the present study demonstrated it analytically without any lower tail of the Weibull distribution used in that paper. In addition, the present model can be approximated by a one-state birth model.  相似文献   

20.
The Absorbed Specific Fracture Energy (ASFE)* is an energy criterion that may be applied to evaluate the embrittlement and fracture properties of low and medium strength structural materials. Some new results are presented to illustrate the application of ASFE, and relating them to the other fracture criteria such as J1c and K1c. A comparison of results is made for static and dynamic loading, and the influence of neutron irradiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号