首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 794 毫秒
1.
The electroelastic analysis of two bonded dissimilar piezoelectric ceramics with a crack perpendicular to and terminating at the interface is made. By using Fourier integral transform, the associated boundary value problem is reduced to a singular integral equation with generalized Cauchy kernel, the solution of which is given in closed form. Results are presented for a permeable crack under anti-plane shear loading and in-plane electric loading. Obtained results indicate that the electroelastic field near the crack tip in the homogeneous piezoelectric ceramic is dominated by a traditional inverse square-root singularity, while the electroelastic field near the crack tip at the interface exhibits the singularity of power law rα, r being distance from the interface crack tip and α depending on the material constants of a bi-piezoceramic. In particular, electric field has no singularity at the crack tip in a homogeneous solid, whereas it is singular around the interface crack tip. Numerical results are given graphically to show the effects of the material properties on the singularity order and field intensity factors.  相似文献   

2.
Based on the complex variable method and perturbation technique, an analytical closed-form solution is derived for the interaction between a screw dislocation and collinear rigid lines along the interface of two dissimilar piezoelectric media under remote anti-plane mechanical and in-plane electrical loading. The rigid lines are either conducting or dielectric. The dislocation core is subjected to a line-force and a line-charge. A square-root singularity of field variables near the tip of an interfacial rigid line is observed. The rigid line extension force acting on the tip is obtained in terms of the strain and electric field intensity factor. The force on the dislocation due to the interfacial rigid line is calculated. The influence of the angular position of the dislocation, material properties and electromechanical coupling factor on the force is studied in detail.  相似文献   

3.
三相压电复合本构模型中的弧形界面裂纹   总被引:5,自引:0,他引:5  
深入研究了三相同心圆柱压电复合本构模型中的弧形绝缘界面裂纹问题。采用复势方法获得了该问题的级数形式的解答,并给出了应力、应变、电位移和电场强度等物理量在全场及界面上的分布,同时推导了裂尖处广义强度因子及裂面张开位移和裂面上电势差的表达式。具体计算表明该级数解答收敛迅速,同时显示出第三相混杂区的影响是不能忽略的。由于裂尖处应力奇异性为-1/2,则这种解答不会出现平面应变状态下界面裂纹裂尖处的振荡奇异性,从而不会产生违反物理实际的裂面相互嵌入现象,则该弹性解答也是建立了坚实的物理基础之上。  相似文献   

4.
A plane problem for a crack moving with a subsonic speed along the interface of two piezoelectric semi-infinite spaces is considered. The crack is assumed to be free from mechanical loading. The limited permeable electric condition with an account of electric traction is adopted at its faces. A uniformly distributed mixed mode mechanical loading and an electric flux are prescribed at infinity. The problem is reduced to the Riemann–Hilbert problem by means of introducing a moving coordinate system and assuming that the electric flux is uniformly distributed along the crack region. An exact solution of this problem is proposed. It permits to find in closed form all necessary electromechanical characteristics at the interface and to formulate the equation for the determination of the electric flux. Analysis of this equation confirms the correctness of the assumption concerning the uniform distribution of the electric flux in the crack region. The values of the electric flux are determined by solving the obtained equation. Thereafter, the stress and electric intensity factors as well as their asymptotic fields at the crack tip are also found. The particular case of a crack moving in a homogeneous piezoelectric material is considered. The values of the electric flux and the fracture parameters are found exactly in a simple form for this case. Also, a numerical analysis is performed for a crack propagating with a subsonic speed between PZT4 and PZT5 materials and for a crack moving in PZT4 material. The electric flux in the crack region, stress and electric intensity factors, crack opening and the energy release rate (ERR) are found as functions of the crack speed, loading and electric permeability of the crack medium. The influence of the electric traction on the crack faces upon the mentioned parameters is demonstrated.  相似文献   

5.
Li  X.-F. 《Meccanica》2003,38(3):309-323
The problem of an interface crack in a half-plane consisting of two bonded dissimilar piezoelectric quarters is considered under antiplane shear and inplane electric loading. The problem is solved under the electrically permeable assumption for a crack. The integral transform technique is employed to reduce the problem to triple integral equations, which is further converted to a hypersingular integral equation for the crack sliding displacement. By solving the resulting equation analytically, the electroelastic field along the interface and the energy release rate are obtained in explicit form, respectively. Several examples are given to illustrate the influence of the material properties and the crack position on the energy release rate.  相似文献   

6.
An interfacial crack with electrically permeable surfaces between two dissimilar piezoelectric ceramics under electromechanical loading is investigated. An exact expression for singular stress and electric fields near the tip of a permeable crack between two dissimilar anisotropic piezoelectric media are obtained. The interfacial crack-tip fields are shown to consist of both an inverse square root singularity and a pair of oscillatory singularities. It is found that the singular fields near the permeable interfacial crack tip are uniquely characterized by the real valued stress intensity factors proposed in this paper. The energy release rate is obtained in terms of the stress intensity factors. The exact solution of stress and electric fields for a finite interfacial crack problem is also derived.  相似文献   

7.
By modeling metal as a special piezoelectric material with extremely small piezoelec- tricity and extremely large permittivity,we have obtained the analytical solutions for an interfacial permeable crack in metal/piezoelectric bimaterials by means of the generalized Stroh formalism. The analysis shows that the stress fields near a permeable interfacial crack tip are usually with three types of singularities:r~(-1/2 iε)and r~(-1/2).Further numerical calculation on the oscillatory indexεare given for 28 types of metal/piezoelectric bimaterials combined by seven commercial piezoelectric materials: PZT-4,BaTiO_3,PZT-5H,PZT-6B,PZT-7A,P-7 and PZT-PIC 151 and four metals:copper,silver,lead and aluminum,respectively.The explicit expressions of the crack tip energy release rate(ERR)and the crack tip generalized stress intensity factors(GSIF)are obtained.It is found that both the ERR and GSIF are independent of the electric displacement loading,although they seriously depends on the mechanical loadings.  相似文献   

8.
An interface crack between two semi-infinite piezoelectric spaces under the action of remote mixed mode loading and electric flux is considered. The properties of the materials, loading and crack geometry admit to consider a two-dimensional problem in the plane perpendicular to the crack front. The crack is assumed to be free from mechanical loading and the limited permeable electric condition holds true. Assuming the electric flux is constant along the crack area, using the known presentations of all electromechanical fields via a piecewise holomorphic vector function, the problem is reduced to a vector Hilbert problem and solved in an analytical way. Clear analytical expressions for stresses and electric displacement as well as for stress and electric intensity factors are derived. As a particular case, a crack in a homogeneous piezoelectric material is considered and exact analytical formulae are presented for this case. The numerical analysis of the obtained formulae showed that for small values of the electric flux the model of a completely permeable crack can be used for any real crack permeability’s. The validity of such an approximation decreases with increase in the mechanical loading and especially of the electric flux.  相似文献   

9.
IntroductionDuetotheirintrinsicelectromechanicalcouplingproperties,piezoelectricceramicshavebeenextensivelyusedindesignofvariouselectronicandelectromechanicaldevicessuchassensorsandactuators.Inrecentyears,mechanicalanalysisofdislocations ,cracks,cavitie…  相似文献   

10.
A plane problem for a tunnel electrically permeable interface crack between two semi-infinite piezoelectric spaces is studied. A remote mechanical and electrical loading is applied. Elastic displacements and potential jumps as well as stresses and electrical displacement along the interface are presented using a sectionally holomorphic vector function. It is assumed that the interface crack includes zones of crack opening and frictionless contact. The problem is reduced to a combined Dirichlet–Riemann boundary value problem which is solved analytically. From the obtained solution, simple analytical expressions are derived for all mechanical and electrical characteristics at the interface. A quite simple transcendental equation, which determines the point of separation of open and close sections of the crack, is found. For the analysis of the obtained results, the main attention is devoted to the case of compressive-shear loading. The analytical analysis and numerical results show that, even if the applied normal stress is compressive, a certain crack opening zone exists for all considered loading values provided the shear field is present. It is found that the shear stress intensity factor at the closed crack tip and the energy release rates at the both crack tips depend very slightly on the magnitude of compressive loading.  相似文献   

11.
Plane problem for an infinite space composed of two different piezoelectric or piezoelectric/dielectric semi-infinite spaces with a periodic set of limited electrically permeable interface cracks is considered. Uniformly distributed electromechanical loading is applied at infinity. The frictionless contact zones at the crack tips are taken into account. The problem is reduced to the combined Dirichlet–Riemann boundary value problem by means of the electromechanical factors presentation via sectionally analytic functions, assuming that the electric flux is uniformly distributed inside the cracks. An exact solution of the problem is proposed. It permits to find in a closed form all necessary electromechanical characteristics at the interface and to formulate the equation for the determination of the electric flux value. Analysis of this equation confirms the correctness of the assumption concerning the uniform distribution of the electric flux in the crack region.Formulae for stresses, electric displacement vector, elastic displacements and electric potential jump at the interface as well as the intensity factors at the crack tips are given. Equation for the contact zone length determination is presented. Calculations for certain material combinations are carried out. The influence of electric permeability of cracks on electromechanical fields and the fracture mechanical parameters is analyzed.  相似文献   

12.
宋天舒  李冬 《力学学报》2010,42(6):1219
采用Green函数法研究界面上含圆孔边界径向有限长度裂纹的两半无限压电材料对SH波的散射和裂纹尖端动应力强度因子问题.首先构造出具有半圆型凹陷半空间的位移Green函数和电场Green函数,然后采用裂纹"切割"方法构造孔边裂纹,并根据契合思想和界面上的连接条件建立起求解问题的定解积分方程.最后作为算例,给出了孔边界面裂纹尖端动应力强度因子的计算结果图并进行了讨论.  相似文献   

13.
Solved is the problem of a crack in a functionally graded piezoelectric material (FGPM) bonded to two elastic surface layers. It is assumed that the elastic stiffness, piezoelectric constant, and dielectric permittivity of the FGPM vary continuously along the thickness of the strip. The outside layers are under antiplane mechanical loading and in-plane electric loading. The solution involves solving singular integral equations by application of the Gauss–Jacobi integration formula. Numerical calculations are carried out to obtain the energy density factors. Their variations with the geometric, loading and material parameters are shown graphically.  相似文献   

14.
Fracture of piezoelectromagnetic materials   总被引:12,自引:0,他引:12  
The crack problem in a medium possessing coupled piezoelectric, piezomagnetic and magnetoelectric effects is considered. A conservative integral is derived based on the governing equations for magnetoelectroelastic media. Closed-form solution is obtained for an anti-plane crack in an infinite medium. The conservative integral is used to obtain the path-independent integral near the crack tip. Expressions for stresses, electric displacements and magnetic inductions in the vicinity of a crack tip are derived. It is found that the path-independent integral around the crack tip equals the energy release rate. In the absence of applied mechanical loads, the energy release rate is always negative.  相似文献   

15.
不同压电介质界面上的反平面运动裂纹   总被引:1,自引:1,他引:0  
利用积分变换技术,得到不同压电介质界面上的平面运动裂纹问题的分析解。结果表明应力及电位移强度因子均与界面裂纹扩展速度及材料参数相关,这不同于均匀压电介质中运动裂纹的结论,当两种压电介质完全相同时,本文结果将退化为均匀压电介质中反平面运动裂纹问题的解。  相似文献   

16.
研究了压电双材料界面钝裂纹附近螺型位错的屏蔽效应与发射条件.应用保角变换技术,得到了复势函数与应力场的封闭形式解,讨论了位错方位、双材料电弹常数及裂纹钝化程度对位错屏蔽效应和发射条件的影响.结果表明,Burgers矢量为正的螺型位错可以降低界面钝裂纹尖端的应力强度因子(屏蔽效应),屏蔽效应随位错方位角及位错与裂纹尖端距离的增大而减弱,压电双材料中螺型位错对裂纹的屏蔽效应强于相应弹性双材料中螺型位错对裂纹的屏蔽效应;位错发射所需的临界无穷远加载或电位移随位错方位角及裂纹钝化程度的增加而增大;最可能的位错发射角度为零度即位错最可能沿裂纹前方发射.论文解答的特殊情况与已有文献一致.  相似文献   

17.
A plane strain problem for two piezoelectric half-spaces adhered by a very thin isotropic interlayer with a crack under the action of remote mixed mode mechanical loading and electrical flux is considered. The crack is situated either at an interface or in the interlayer. It is assumed that the substrates are much stiffer than the intermediate layer. Therefore, pre-fracture zones (plastic or damage) arise at the crack continuations. Normal and shear stresses are assumed to be constant in this zones and to satisfy some material equation, which can be taken from theory or derived experimentally. Modeling the pre-fracture zones by the crack continuations with unknown cohesive stresses on their faces reduces the problem to elastic interface crack analysis leading to a Hilbert problem. This problem is solved exactly. The pre-fracture zone lengths and stresses in these zones are found from algebraical and transcendental equations. The latter are derived from the conditions of stress finiteness at the ends of pre-fracture zones and the material equations. The electrical displacement at any point of the pre-fracture zones is found in closed form as well. Particular cases of symmetrical loading and of equivalent properties of the upper and lower bimaterial components are considered. Numerical results corresponding to certain material combinations and interlayer material equations are presented and analysed. In the suggested model, any singularities connected with the crack are eliminated, i.e., all mechanical and electrical characteristics are limited in the near-crack tip region.  相似文献   

18.
An in-depth investigation is made on the problem of an arc-shaped interface insulating crack in a three-phase concentric circular cylindrical piezoelectric composite constitutive model. An exact solution in series form is derived by employing the complex variable method. In addition, the distribution of physical quantities such as stresses, strains, electric displacements and electric fields in the whole field and along the interface is also presented. Explicit expressions for crack opening displacement, jump in electric potential on the crack surface and the electro-elastic field intensity factors at the crack tips are obtained. Specific calculations demonstrate that the convergence of the series form solution is satisfactory and that the outer phase (composite phase) will exert a significant effect on the electro-mechanical coupling response of the composite system. Owing to the fact that stresses and electric displacements still possess conventional inverse square root singularities, the oscillating singularities near the crack tip under plane strain conditions will be absent and, as a result, no unphysical interpenetration phenomenon of the two crack surfaces will occur. In conclusion, the elastic solution obtained is also based on a solid physical foundation. Project supported by the National Natural Science Foundation of China (No.59635140), and the Doctorate Foundation of Xi'an Jiaotong University.  相似文献   

19.
Summary  A piezoelectric layer bonded to the surface of an elastic structure is considered. The piezoelectric and the elastic layers are infinite along the x-axis and have finite thickness in the y-direction. The polarization direction of the piezoelectric material is along the y-axis. By means of the method of singular integral equations, the solution in a Laplace transform plane is demonstrated. Laplace inversion yields the results in the time domain. Numerical values of the crack tip fields under in-plane transient electromechanical loading are obtained. The influence of layers thickness on stress and electric displacement intensity factors is investigated. Received 16 March 2000; accepted for publication 16 August 2000  相似文献   

20.
The anti-plane problem of N arc-shaped interfacial cracks between a circular piezoelectric inhomogeneity and an infinite piezoelectric matrix is investigated by means of the complex variable method. Cracks are assumed to be permeable and then explicit expressions are presented, respectively, for the electric field on the crack faces, the complex potentials in media and the intensity factors near the crack-tips. As examples, the corresponding solutions are obtained for a piezoelectric bimaterial system with one or two permeable arc-shaped interfacial cracks, respectively. Additionally, the solutions for the cases of impermeable cracks also are given by treating an impermeable crack as a particular case of a permeable crack. It is shown that for the case of permeable interfacial cracks, the electric field is jumpy ahead of the crack tips, and its intensity factor is always dependent on that of stress. Moreover all the field singularities are dependent not only on the applied mechanical load, but also on the applied electric load. However, for the case of a homogeneous material with permeable cracks, all the singular factors are related only to the applied stresses and material constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号