首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Physics letters. A》1999,260(5):381-385
We combine effective medium theory (EMT) with the two-channel conducting model to study the magnetic granular concentration dependence of a giant magnetoresistance (GMR) in magnetic granular composites. The composite is composed of small magnetic granules (such as Co) embedded in an immiscible nonmagnetic metallic matrix (such as Ag). We present a model for the composite in which the magnetic metallic granules are spherical in shape and have a distribution in sizes, and in which there are different contributions of superparamagnetic and ferromagnetic granules to conductance. The calculated result about the concentration dependence of GMR is in agreement with the experimental data.  相似文献   

2.
Cu–Co ferromagnetic alloys occurring as granular films and exhibiting giant magnetoresistance (GMR) property have been synthesized using both DC and pulse electrodeposition techniques. The growth process of these electrodeposits comprising multiple granules of disparate morphology, magnetic features exhibits critical dependence on electrodeposition conditions. Using ferromagnetic resonance and magnetic hysteresis data, we have attempted a correlation between evolution of these electrodeposits and their ferromagnetic properties with special emphasis on GMR property.  相似文献   

3.
It is shown that two circumstances must be taken into account in order to describe the tunneling magnetoresistance and Hall effect in granular ferromagnetic metals: 1) the size variance of the metallic granules and 2) the percolation character of the tunneling conductivity of the system, determining the optimal (temperature-dependent) size of the granules through which current transport occurs. This complicates the dependences of the magnetoresistance and Hall resistance of the system on its magnetization and temperature. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 8, 579–584 (25 April 1999)  相似文献   

4.
The features of the optical and magnetooptical properties of granular alloys with giant magnetoresistance in the IR region are examined in reference to the magnetorefractive effect and the equatorial Kerr effect. Calculations are performed within the semiclassical approximation with consideration of spin-dependent scattering in the bulk of the granules and on their surfaces (interfaces). The expressions obtained for σ xx(ω) and σ xy(ω) are found to be sensitive to scattering on the surfaces and in the bulk of the granules, as well as to granule size, the type of impurities trapped on the interfaces, the frequency of the incident light, and the external magnetic field. For granular thin films exhibiting giant magnetoresistance, the theory predicts significant relative changes in the optical reflection and transmission coefficients when the sample is magnetized to saturation (0.02% and 20%, respectively, for giant magnetoresistance of the order of 20%), as well as Kerr and Faraday effects that are nonlinear with respect to magnetization. Zh. éksp. Teor. Fiz. 116, 1762–1769 (November 1999)  相似文献   

5.
RF-sputtered CoFe-NM granular alloys (NM=Ag, Cu) with CoFe volume content, xv, ranging from 0.10 to 0.45 have been studied. These two series of samples show similar features depending on the synthesis conditions and post-deposition annealing treatments, revealing the strong dependence of magnetotransport properties on microstructure. Three different regimes have been observed as xv is increased: the classical giant magnetoresistance (GMR) regime at low ferromagnetic contents; at intermediate xv, a domain structure appears, and GMR and anisotropic magnetoresistance (AMR) together with domain wall scattering are observed; and a third regime at xv close but below the volume percolation threshold, where the two latter contributions still coexist, while the GMR contribution has been suppressed by strong magnetic correlations. The role of the metallic matrix is crucial to determine the crossover ferromagnetic contents between these three regimes, which depend on the relative immiscibility of CoFe either in the Ag or Cu matrices and the diffusivity of Ag and Cu. Moreover, the metallic matrix settles the degree of CoFe segregation, sample crystallisation and texture, which are responsible for the magnetotransport properties.  相似文献   

6.
Magnetic anisotropy and orientational variance as well as shape diversity of granules largely determine the magnetic properties of granular ferromagnetic metals. The model of magnetically anisotropic ellipsoidal granules explains the glassy nature of the magnetic state of such systems. The relaxation of the magnetization and the magnetoresistance of granular ferromagnetic metals is examined on the basis of this model.  相似文献   

7.
We carried out a comprehensive study of structural, magnetic and electrotransport properties of as-deposited and annealed (Ni80Fe20)χAg(1−χ) heterogenous alloys prepared by sputtering. The NiFe atomic concentration was varied between 15% and 40%. These alloys consist of small magnetic particles (Ni80Fe20) embedded in a nonmagnetic matrix (Ag). The structures of these alloys were investigated by X-ray diffraction, scanning electron microscopy and high-resolution cross-section transmission electron microscopy. The magnetic measurements were made using SQUID magnetometry and ferromagnetic resonance. Magnetoresistance was measured with a conventional four-point probe between 1.5 K and room temperature in field range 0–6T. Three contributions to the magnetoresistance of these granular alloys have been clearly identified: the spin-valve (or giant) magnetoresistance as in multilayers, scattering on magnetic fluctuations (as in any ferromagnetic metal around its magnetic ordering temperature), and anisotropic magnetoresistance. These three contributions have their own dependences on the size of the magnetic particles, on the degree of intermixing between Ni80Fe20 and Ag, and on temperature. We discuss the different shapes and amplitudes of magnetoresistance versus Ni80Fe20 concentration or temperature and their evolution upon annealing in terms of the relative roles of these three contributions. The magnetoresistance in multilayers (current in-plane or perpendicular to the plane) and granular alloys are also compared.  相似文献   

8.
9.
The temperature peak of the resistance and the giant magnetoresistance of degenerate ferromagnetic semiconductors with an arbitrary degree of electron spin polarization are investigated. The spin-wave and paramagnetic domains are considered. The calculations are based on the notion of the magnetic-impurity scattering of carriers. Fiz. Tverd. Tela (St. Petersburg) 39, 1589–1593 (September 1997)  相似文献   

10.
The tunneling magnetoresistance (TMR) of granular films prepared by the co-deposition of well-defined ferromagnetic Co clusters and insulating inert-gas matrix atoms has been studied as function of matrix atoms (Kr, Xe), cluster volume fraction, temperature (4–40 K) and cluster size (4.2–5.2 nm). Tunneling samples with resistivities that differ by about five orders of magnitude have a TMR that is found to be independent of matrix and cluster volume fraction, i.e. is independent of both tunneling barrier height and width. All samples show a characteristic TMR(T)-dependence that can be explained by a model which takes into account that magnetic moments at the cluster surface are becoming misaligned with increasing temperature. The fraction of misaligned moments at a fixed temperature is increasing with decreasing clusters size.  相似文献   

11.
We present small-angle neutron scattering data proving that, on the insulating side of the metal-insulator transition, the doped perovskite cobaltite La(1-x)Sr(x)CoO(3) phase separates into ferromagnetic metallic clusters embedded in a nonferromagnetic matrix. This induces a hysteretic magnetoresistance, with temperature and field dependence characteristic of intergranular giant magnetoresistance (GMR). We argue that this system is a natural analog to the artificial structures fabricated by depositing nanoscale ferromagnetic particles in a metallic or insulating matrix; i.e., this material displays a GMR effect without the deliberate introduction of chemical interfaces.  相似文献   

12.
13.
Conducting polymer composites based on Fe3O4 nanocrystals in a polyvinyl alcohol matrix are synthesized. The current-voltage characteristics, the magnetization, and the magnetoresistance of the nanocomposites are investigated, and a giant negative magnetoresistance is observed. The decrease in the resistance at room temperature is found to reach 10% in a 10 kOe field. Pis’ma Zh. éksp. Teor. Fiz. 67, No. 1, 37–40 (10 January 1998)  相似文献   

14.
Studies of the magnetoresistance of granular Fe/SiO2 films within the compositional range corresponding to insulators revealed a large positive magnetoresistance. The positive magnetoresistance reaches 10% in magnetic fields ~100 Oe at room temperature and exhibits slow response times (~2 min) to stepped magnetic-field variation. The nature of the effect is apparently associated with the influence of ferromagnetic cluster aggregates of iron nanoparticles on the magnetoresistance.  相似文献   

15.
The substitution of manganese for cobalt in the perovskite La 0.8 Sr 0.2 CoO 3 has been studied. A significant increase of the magnetoresistance (MR) is obtained, reaching 60% at 5 K under 7 T for . This behavior originates from a spectacular increase of the resistivity correlated to a significant decrease of ferromagnetism by Mn doping. This enhancement of magnetoresistance can be interpreted by the growth of ferromagnetic clusters in the insulating matrix, by applying a magnetic field. Received 7 May 1999  相似文献   

16.
In this paper the quantum size effect in giant magnetoresistance of magnetic superlattices is studied. The electrons are considered to be confined in a set of quantum wells, which are different for the ferromagnetic and antiferromagnetic ordering in magnetic superlattices. The oscillation of giant magnetoresistance with increasing thickness of the nonmagnetic spacer layer is explained. It is shown that the influence of quantum size effects on the giant magnetoresistance of magnetic superlattices is considerable.  相似文献   

17.
The anomalous behavior of magnetoresistance has been revealed in a number of granular microwires. In contrast to the giant magnetoresistance of granular alloys, which is associated with the spin-dependent scattering in the bulk of grains and at their surface, is linear in the square of the magnetization, and decreases with an increase in temperature, the magnetoresistance, for example, in Co10Cu90 microwires is negative, increases with an increase in temperature below the Curie temperature, and does not reach saturation in the field dependence in the high-field range. A simple mechanism of negative giant magnetoresistance due to scattering of spin-polarized charge carriers by impurity magnetic moments localized in the nonmagnetic intergranular spacers has been proposed taking into account that a considerable part of magnetic ions in microwires exhibiting this behavior is dissolved in the intergranular spacers. It has been shown that the corresponding contribution to magnetoresistance can reach 10–20%.  相似文献   

18.
A doped manganite with the composition Eu0.55Sr0.45MnO3 exhibits giant negative magnetostriction and colossal negative magnetoresistance at temperatures in the vicinity of the magnetic phase transformation (T~41 K). In the temperature interval 4.2 K≤T ≤40 K, the isotherms of magnetization, volume magnetostriction, and resistivity exhibit jumps at the critical field strength Hc1, which decreases with increasing temperature. At 70 K ≤T ≤120 K, the jumps on the isotherms are retained, but the shapes of these curves change and the Hc1 value increases with the temperature. At H<Hc1, the magnetoresistance is positive and exhibits a maximum at 41 K; at H>Hc1, the magnetoresistance becomes negative, passes through a minimum near 41 K and then reaches a colossal value. The observed behavior is explained by the existence of three phases in Eu0.55Sr0.45MnO3, including a ferromagnetic (in which the charge carriers concentrate due to a gain in the s-d exchange energy) and two antiferromagnetic phases (of the A and CE types). The volumes of these phases at low temperatures are evaluated. It is shown that the colossal magnetoresistance and the giant volume magnetostriction are related to the ferromagnetic phase formed as a result of the magnetic-field-induced transition of the CE-type antiferromagnetic phase to the ferromagnetic state.  相似文献   

19.
The giant injection magnetoresistive effect has been observed in a granulated Co/SiO2 film on a semiconductor GaAs substrate in a narrow temperature range near T = 300 K. According to the existing theory, the nature of the effect is due to the structure and physical problems of the interface layer. The spatial distribution of cobalt nanoparticles in the bulk of the Co/SiO2 granular film and at the granular film/semiconductor substrate (GF/SS) interface has been investigated by the reflectometry and small-angle scattering of synchrotron radiation in the grazing geometry. It has been shown that the characteristic average distance between the cobalt granules in the bulk of the film is 7.3 nm. At the same time, the average distance between the granules with a vertical size of about 7.5 nm at the GF/SS interface is 32 nm. The experimental data indicate the low concentration of cobalt at the interface and the point character of the contact of the main bulk of the Co/SiO2 film with the GaAs substrate through a relatively diluted layer of ferromagnetic cobalt granules.  相似文献   

20.
Giant positive or negative magnetoresistance is calculated in a band model. The spectra of the band electrons in a two-sublattice antiferromagnetic intermetallic compound depend on the antiferromagnetism vector L(T,H). The metamagnetic transition to the ferromagnetic phase is accompanied by splitting with respect to the spin σ, displacement of the energy bands, and a decrease in the effective masses of the band electrons. This mechanism of giant negative magnetoresistance is also accompanied by an increase in the relaxation time τ. Scattering by chemical-bond fluctuations is considered as the main relaxation mechanism. Giant positive magnetoresistance results from a four-subband model of 4f and 5f intermetallic compounds. The electron effective masses m (J jT ) of the (j,σ) bands increase with the mean angular momentum J 1T (T,H) of an ion in the jth sublattice of 4(5)f ions. The thermodynamics of such a four-sublattice model, the nonlinear magnetization and magnetoresistance curves, and the nonmonotonic dependence of the specific heat C m(T,H) on the field H are calculated. Fiz. Tverd. Tela (St. Petersburg) 39, 1806–1814 (October 1997)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号