首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrodynamic cavitation has an important effect on the performance of Diesel injectors. It influences the nature of the fuel spray and the efficiency of the combustion process. In the present study, we investigate numerically the effect of wall roughness in the cavitating and turbulent flow developing inside a Diesel injector. The mixture model based on a single fluid is adopted and the commercial Fluent software is used to solve the transport equations.The discharge coefficient Cd is computed for different cavitation numbers and wall roughness heights. Profiles of density mixture, vapor volume fraction, mean velocity and turbulent kinetic energy are reported. The effects of wall roughness and injection pressure are analyzed.  相似文献   

2.
The understanding of the thermodynamic effects of cavitating flow is crucial for applications like turbopumps for liquid hydrogen LH2 and oxygen LOx in space launcher engines. Experimental studies of this phenomenon are rare as most of them were performed in the 1960s and 1970s. The present study presents time resolved IR (Infra-Red) measurements of thermodynamic effects of cavitating flow in a Venturi nozzle.Developed cavitating flow of hot water (95 °C) was observed at different operating conditions – both conventional high speed visualization and high speed IR thermography were used to evaluate the flow parameters.Both the mean features of the temperature distributions and the dynamics of the temperature field were investigated. As a result of evaporation and consequent latent heat flow in the vicinity of the throat a temperature depression of approximately 0.4 K was measured. In the region of pressure recuperation, where the cavitation structures collapse, the temperature rise of up to 1.4 K was recorded. It was found that the temperature dynamics closely follows the dynamics of cavitation structures.Finally experimental results were compared against a simple model based on the Rayleigh–Plesset equation and the thermal delay theory and plausible agreement was achieved.Experimental data is most valuable for further development of numerical models which are, due to poor ensemble of existing experimental results, still at a very rudimentary level.  相似文献   

3.
4.
A numerical investigation of the behaviour of a cavitation pocket developing along a Venturi geometry has been performed using a compressible one-fluid hybrid RANS/LES solver. The interplay between turbulence and cavitation regarding the unsteadiness and structure of the flow is complex and not well understood. This constitutes a determinant point to accurately simulate the dynamic of sheet cavities. Various turbulent approaches are tested: a new Scale-Adaptive model and the Detached Eddy Simulation. 2D and 3D simulations are compared with the experimental data. An oblique mode of the sheet is put in evidence.  相似文献   

5.
This paper reports on the measurements of the near-wall turbulence statistics in a fully developed channel flow. The flow measurements were carried out with a novel laser Doppler velocity profile sensor with a high spatial resolution. The sensor provides both the information of velocity and position of individual tracer particles inside the measurement volume. Hence, it yields the velocity profile inside the measurement volume, in principle, without the sensor being mechanically traversed. Two sensor systems were realized with different techniques. Typically the sensor has a relative accuracy of velocity measurement of 10−3 and the spatial resolution of a few micrometers inside the measurement volume of about 500 μm long. The streamwise velocity was measured with two independent sensor systems at three different Reynolds number conditions. The resulting turbulence statistics show a good agreement with available data of direct numerical simulations up to fourth order moment. This demonstrates the velocity profile sensor to be one of the promising techniques for turbulent flow research with the advantage of a spatial resolution more than one magnitude higher than a conventional laser Doppler technique.  相似文献   

6.
This paper is concerned with the validation of a four-hole pressure probe, known as a cobra probe, for turbulence measurement. For the first time in the literature, third- and fourth-order velocity correlations measured using a pressure probe are presented. The probe measurements are compared with established data for fully developed pipe flow, and good agreement is found. A new probe calibration methodology and improvements to the data acquisition and processing system are also presented.  相似文献   

7.
采用高频电控热激发汽泡的方式构造微通道人工泡状流,可以有效抑制微通道沸腾流动的不稳定性和强化传热。本文基于Lattice Boltzmann大密度比多相流复合模型,数值研究了通道内人工泡状流的流动和传热,通过比较分析不同发泡频率的泡状流,量化分析了汽泡运动和增长对微通道流动与传热的相互影响。一方面着重分析了汽泡运动对微通道运动边界层以及汽泡相变增长对热边界层的影响,另一方面也研究了边界层对汽泡动力行为的影响,所得结论对研究抑制微通道沸腾流动不稳定性和强化传热有参考意义。  相似文献   

8.
The effects of wall roughness on turbulence structure modifications were explored by numerical experiments, carried out using Large Eddy Simulation techniques. The wall geometry was made using an archetypal artificial method, thus to achieve irregular two- and three-dimensional shapes. The proposed roughness shapes are highly irregular and are characterised by high and small peaks, thus it can be considered a practical realistic roughness. Their effects are analysed comparing the turbulence quantities over smooth, 2D and 3D rough walls of fully developed channel flow at relatively low friction Reynolds number Reτ=395. Both transitional and fully rough regimes have been investigated. The two rough surfaces were built in such a way that the same mean roughness height and averaged mean deviation is obtained. Despite of this, very different quantitative and qualitative results are generated. The analysis of the mean quantitative statistics and turbulence fluctuations shows that deviations are mainly concentrated in the inner layer. These results support the Townsend’s similarity hypothesis. Among the geometrical parameters, which characterise the wall geometries, roughness slope correlates well with the roughness function ΔU+. Specifically, a logarithmic law is proposed to predict the downward shift of the velocity profile for the transitional regime. Instantaneous view of turbulent organised structures display differences in small-scale structures. The flow field over rough surfaces is populated with coherent structures shorter than those observed over flat planes. The comparative analysis of both streaks and wall-normal vortical structures shows that 2D and 3D irregularities have quite different effects. The results highlight that 3D rough wall are representative of a more realistic surface compared to idealised 2D roughness.  相似文献   

9.
Large eddy simulation of natural convection in a confined square cavity is described. The use of a complex compressible code with an artificial acoustic stiffness correction method, allows the use of higher time steps for a faster time and statistical convergence. We consider a broadly studied experimental case, consisting of a natural convective flow in a confined square cavity, with vertical walls heated at different rates (active walls), set at Ra = 1.58 × 109. Turbulent boundary layers developing on the active walls and a vertical stable stratification characterize the mean flow. It is shown here that the results of this study match the experimental results reported in literature; for instance, mean velocity results. Although results for rms velocity fluctuations are barely over-predicted, the peak region is properly represented, while the greatest disagreements are found in the turbulent heat flow rate (velocity–temperature correlations). Turbulent structures were identified using different visualization methods and statistical studies. The authors found that the boundary layers on the active walls almost reach the fully turbulent regime, tending toward the laminar regime along the horizontal walls.  相似文献   

10.
The present work examines the predictive capability of a two-fluid CFD model that is based on the kinetic theory of granular flow in simulating dilute-phase turbulent liquid-particle pipe flows in which the inter-stitial fluid effect on the particle fluctuating motion is significant.The impacts of employing different drag correlations and turbulence closure models to describe the fluid-particle interactions(i.e.drag force and long-range interaction)are examined at both the mean and fluctuating velocity levels.The model pre-dictions are validated using experimental data of turbulent liquid-particle flows in a vertical pipe at different particle Reynolds numbers(ReP > 400 and ReP < 400),which characterize the importance of the vortex shedding phenomenon in the fluid-phase turbulence modulation.The results indicate that(1)the fluctuating velocity level predictions at different ReP are highly sensitive to the drag correlation selec-tion and(2)different turbulence closure models must be employed to accurately describe the long-range fluid-particle interaction in each phase.In general,good agreement is found between the model predic-tions and the experimental data at both the mean and fluctuating velocity levels provided that appropriate combinations of the drag correlation and the turbulence closure model are selected depending on Rep.  相似文献   

11.
High speed cine observations of cavitating flow in a duct   总被引:1,自引:0,他引:1  
The dynamics of cavities produced in cavitating flow confined in a duct was studied. The ultimate purpose of the work is to develop models of the flow to assist in predicting cavitation erosion and noise. Observations of the cavitating flow using high speed cine photography allowed confirmation to be made of the shedding mechanism originally described by Knapp, and measurements of the cavity dimensions to be determined as a function of time. It was found that the time for a cavity to collapse was found three times greater than expected from Rayleigh's classical theory.  相似文献   

12.
We revisit the stability of a deformable interface that separates a fully-developed turbulent gas flow from a thin layer of laminar liquid. Although this problem has received considerable attention previously, a model that requires no fitting parameters and that uses a base-state profile that has been validated against experiments is, as yet, unavailable. Furthermore, the significance of wave-induced perturbations in turbulent stresses remains unclear. To address these outstanding issues, we investigate this problem and introduce a turbulent base-state velocity that requires specification of a flow rate or a pressure drop only; no adjustable parameters are necessary. This base state is validated extensively against available experimental data as well as the results of direct numerical simulations. In addition, the effect of perturbations in the turbulent stress distributions is investigated, and demonstrated to be small for cases wherein the liquid layer is thin. The detailed modelling of the liquid layer also elicits two unstable modes, ‘interfacial’ and ‘internal’, with the former being the more dominant of the two. We show that it is possible for interfacial roughness to reduce the growth rate of the interfacial mode in relation to that of the internal one, promoting the latter, to the status of most dangerous mode. Additionally, we introduce an approximate measure to distinguish between ‘slow’ and ‘fast’ waves, the latter being the case for ‘critical-layer’-induced instabilities; we demonstrate that for the parameter ranges studied, the large majority of the waves are ‘slow’. Finally, comparisons of our linear stability predictions are made with experimental data in terms of critical parameters for onset of wave-formation, wave speeds and wavelengths; these yield agreement within the bounds of experimental error.  相似文献   

13.
A hierarchical structure (HS) analysis (β-test and γ-test) is applied to a fully developed turbulent pipe flow. Velocity signals are measured at two cross sections in the pipe and at a series of radial locations from the pipe wall. Particular attention is paid to the variation of turbulent statistics at wall units 10<y+<3000. It is shown that at all locations the velocity fluctuations satisfy the She–Leveque hierarchical symmetry (Phys. Rev. Lett. 72 (1994) 336). The measured HS parameters, β and γ, are interpreted in terms of the variation of fluid structures. Intense anisotropic fluid structures generated near the wall appear to be more singular than the most intermittent structures in isotropic turbulence and appear to be more outstanding compared to the background fluctuations; this yields a more intermittent velocity signal with smaller γ and β. As turbulence migrates into the logarithmic region, small-scale motions are generated by an energy cascade and large-scale organized structures emerge which are also less singular than the most intermittent structures of isotropic turbulence. At the center, turbulence is nearly isotropic, and β and γ are close to the 1994 She–Leveque predictions. A transition is observed from the logarithmic region to the center in which γ drops and the large-scale organized structures break down. We speculate that it is due to the growing eddy viscosity effects of widely spread turbulent fluctuations in a similar way as in the breakdown of the Taylor vortices in a turbulent Couette–Taylor flow at high Reynolds numbers.  相似文献   

14.
Heat transfer coefficients were measured and new correlations were developed for two-phase, two-component (air and water) heat transfer in a horizontal pipe for different flow patterns. Flow patterns were observed in a transparent circular pipe using an air–water mixture. Visual identification of the flow patterns was supplemented with photographic data, and the results were plotted on the flow regime map proposed by Taitel and Dukler and agreed quite well with each other. A two-phase heat transfer experimental setup was built for this study and a total of 150 two-phase heat transfer data with different flow patterns were obtained under a uniform wall heat flux boundary condition. For these data, the superficial Reynolds number ranged from 640 to 35,500 for the liquid and from 540 to 21,200 for the gas. Our previously developed robust two-phase heat transfer correlation for a vertical pipe with modified constants predicted the horizontal pipe air–water heat transfer experimental data with very good accuracy. Overall the proposed correlations predicted the data with a mean deviation of 1.0% and an rms deviation of 12%.  相似文献   

15.
We present a selection of results from experiments on an air turbulent jet flow, which included measurements of all the three velocity components and their nine gradients with the emphasis on the properties of invariant quantities related to velocity gradients (enstrophy, dissipation, enstrophy generation, etc.). This has been achieved by a 21 hot wire probe (5 arrays x 4 wires and a cold wire), appropriate calibration unit and a 3-D calibration procedure [1]. A more detailed account on the results will be published elsewhere.  相似文献   

16.
《Comptes Rendus Mecanique》2017,345(2):117-124
Simulations using a Restricted Nonlinear (RNL) system, where mean flow distortion resulting from Reynolds stress feedback regenerates rolls, is applied in a channel flow under subcritical conditions. This quasi-linear restriction of the dynamics is used to study invariant solutions located in the bulk of the flow found recently by Rawat et al. (2016) [14]. It is shown that the RNL system truncated to a single streamwise mode for the perturbation supports invariant solutions that are found to bifurcate from a relative periodic orbit into a travelling wave solution when the spanwise size is increasing. In particular, the travelling wave solution exhibits a spanwise localized structure that remains unchanged for large values of the spanwise extent as the invariant solution lying on the lower branch found by Rawat et al. (2016) [14]. In addition, travelling wave solutions provided by this minimal RNL system are self-similar with respect to the Reynolds number based on the centreline velocity, and the half-channel height varying from 2000 to 5000.  相似文献   

17.
Direct measurement of mixing quality in a pulsatile flow micromixer   总被引:2,自引:0,他引:2  
Pulsatile action can be used to mix two streams entering a tube from two separate branches of a bifurcation at low Reynolds numbers. The pulsatile action is provided by two pinch valves, which deform flexible tubing immediately upstream of the connection. The pinch valve action is controlled using a master-slave pulse generator setup. The quality of mixing is evaluated directly by measuring the fluorescence that results from the chemical reaction of species transported in the two streams, one containing native biotin and the other, fluorescein biotin bound to streptavidin. The reaction kinetics are accounted for by normalization using fluorescence measurements on well mixed solutions at the same residence time. The results show that the pulsatile micromixer provides almost complete mixing. Furthermore, the present measurements match results obtained in a previous experiment where flow visualization and image analysis were used to measure mixing quality in a scaled-up model.  相似文献   

18.
Particle-laden flows in a horizontal channel were investigated by means of a two-phase particle image velocimetry (PIV) technique. Experiments were performed at a Reynolds number of 6 826 and the flow is seeded with polythene beads of two sizes, 60 μm and 110 μm. One was slightly smaller than and the other was larger than the Kolmogorov length scale. The particle loadings were relatively low, with mass loading ratio ranging from 5×10−4 to 4×10−2 and volume fractions from 6×10−7 to 4.8×10−5, respectively. The results show that the presence of particles can dramatically modify the turbulence even under the lowest mass loading ratio of 5×10−4. The mean flow is attenuated and decreased with increasing particle size and mass loading. The turbulence intensities are enhanced in all the cases concerned. With the increase of the mass loading, the intensities vary in a complicated manner in the case of small particles, indicating complicated particle-turbulence interactions; whereas they increase monotonously in the case of large particles. The particle velocities and concentrations are also given. The particles lag behind the fluid in the center region but lead in the wall region, and this trend is more prominent for the large particles. The streamwise particle fluctuations are larger than the gas fluctuations for both sizes of particles, however their varying trend with the mass loadings is not so clear. The wall-normal fluctuations increase with increasing mass loadings. They are smaller in the 60 μm particle case but larger in the 110 μm particle case than those of the gas phase. It seems that the small particles follow the fluid motion to certain extent while the larger particles are more likely dominated by their own inertia. Finally, remarkable non-uniform distributions of particle concentration are observed, especially for the large particles. The inertia of particles is proved to be very important for the turbulence modification and particles behaviors and thus should be considered in horizontal channels. The project supported by the National Natural Science Foundation of China (50276021), and Program for New Century Excellent Talents in University, Ministry of Education (NCET-04-0708) The English text was polished by Yunming Chen.  相似文献   

19.
The spanwise correlation of a circular cylinder and a trapezoidal bluff body placed inside a circular pipe in fully developed turbulent regime is studied using hotwire anemometer. The present configuration possesses complex fluid structure interaction owing to the following features: high blockage effect; low aspect ratio of the body; upstream turbulence and interaction of axisymmetric flow with a two dimensional bluff body. The spatial correlation of such configuration is seldom reported in the literature. Results are presented for Reynolds number of ReD=1×105. Three different blockage ratios (0.14, 0.19 and 0.28) are considered in the present study. Correlation coefficient is observed to improve with increase in blockage ratio. Compared to a circular cylinder, a trapezoidal bluff body possesses high correlation length. The near wall effects tend to increase the phase drift, which is reflected in low correlation coefficients close to the pipe wall. The results show that the simultaneous effect of curvature, low aspect ratio and upstream turbulence reduces the correlation coefficients significantly as compared to unconfined and confined (parallel channel) flows. The low frequency modulations with a circular cylinder are higher for lower blockage ratios. The three-dimensionality of vortex shedding for trapezoid with a blockage ratio of 0.28 was observed to be lower compared to circular cylinder and all other blockage ratios. Low frequency modulations were found to be responsible for weak vortex shedding from a circular cylinder compared to a trapezoidal bluff body. The vortex shedding is observed to be nearly two dimensional in case of a trapezoidal bluff body of blockage ratio 0.28.  相似文献   

20.
This paper presents an analysis, based on a particle image velocimetry method, of soil flow field beneath a grouser wheel traveling over loose soil. Although the grouser wheel is expected to have better traction and mobility over fine, loose soil, its interaction mechanisms with the soil remain to be elucidated. Thus, a particle image velocimetry-based soil flow analysis is conducted to directly observe soil behavior around the grouser wheel. In the experimental analysis, key parameters of the soil flow field, such as general shape, thickness, streamlines of the flow field, soil velocity on the streamlines, and soil failure angle are examined quantitatively. From the results, the soil flow shape periodically changes with wheel rotation, and this change appears, depending on wheel slip varying over time. Furthermore, the experimental result of the soil failure angle differs drastically from its typical theory. These results will contribute to modeling the mechanical interaction between the grouser wheel and soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号