首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the spacetime of a d-dimensional static tense brane black hole we elaborate the mechanism by which massive scalar fields decay. The metric of a six-dimensional black hole pierced by a topological defect is especially interesting. It corresponds to a black hole residing on a tensional 3-brane embedded in a six-dimensional spacetime, and this solution has gained importance due to the planned accelerator experiments. It happened that the intermediate asymptotic behaviour of the fields in question was determined by an oscillatory inverse power-law. We confirm our investigations by numerical calculations for five- and six-dimensional cases. It turned out that the greater the brane tension is, the faster massive scalar field decay in the considered spacetimes.  相似文献   

2.
A family of spherically symmetric solutions with horizon in the model with m  -component anisotropic fluid is presented. The metrics are defined on a manifold that contains a product of n−1n1 Ricci-flat “internal” spaces. The equation of state for any s  -th component is defined by a vector UsUs belonging to Rn+1Rn+1. The solutions are governed by moduli functions HsHs obeying non-linear differential equations with certain boundary conditions imposed. A simulation of black brane solutions in the model with antisymmetric forms is considered. An example of solution imitating M2–M5M2M5 configuration (in D=11D=11 supergravity) corresponding to Lie algebra A2A2 is presented.  相似文献   

3.
A family of generalized composite intersecting S-brane solutions with orthogonal intersection rules is described.  相似文献   

4.
A Kerr metric describing a rotating black hole is obtained on the three brane in a five-dimensional Randall-Sundrum brane world by considering a rotating five-dimensional black string in the bulk. We examine the causal structure of this space-time through the geodesic equations.  相似文献   

5.
We compute the greybody factors for classical black holes in a domain where two kinds of charges and their anticharges are excited by the extra energy over extremality. We compare the result to the greybody factors expected from an effective string mode] which was earlier shown to give the correct entropy. In the regime where the left- and right-moving temperatures are much smaller than the square root of the effective string tension, we find a non-trivial greybody factor which agrees with the effective string mode]. However, if the temperatures are comparable with the square root of the effective string tension, the greybody factors agree only at the leading order in energy. Nevertheless, there are several interesting relations between the two results, suggesting that a modification of the effective string mode] might lead to better agreement.  相似文献   

6.
We propose that a large Schwarzschild black hole (BH) is a bound state of highly excited, long, closed strings at the Hagedorn temperature. According to our proposal, the interior of the BH consists, on average, of a uniform distribution of matter with low curvature and large quantum fluctuations about the average. This proposal represents a dramatic departure from any conventional state of matter and from the longstanding expectation that the interior of a BH should look like empty space except for a very small, dense core (the singularity). Standard effective field theory in terms of the metric and other quantum fields is incapable of describing such a state in a meaningful way. However, in polymer physics, such states can be described by a mean field theory in terms of the polymer concentration. We therefore propose that the interior of the BH be described in terms of an effective free‐energy density which is a function of the string concentration or entropy density; this density being a highly non‐perturbative quantity in terms of the metric and other quantum fields. For a macroscopic BH, our proposed free‐energy density contains only linear and quadratic terms, in analogy with that of the theory of collapsed polymers. We calculate the coefficient of the linear term under the accepted assumption that the dominant interaction of the strings at large distances is the gravitational interaction and the coefficient of the quadratic term by relying on explicit string calculations to determine the rate of interaction in terms of the string coupling. Using the effective free energy, we find that the size of the bound state is determined dynamically by the string attractive interactions and derive scaling relations for the entropy, energy and size of the bound state. We show that these agree with the scaling relations of the BH; in particular, with the area law for the BH entropy. The fact that the entropy is not extensive is a result of having strong correlations in the interior state, and the specific form of the entropy‐area law originates from the inverse scaling of the effective temperature with the bound‐state radius. We also find that the energy density of the bound state is equal to its pressure.  相似文献   

7.
We consider Einstein gravity coupled to an U(1) gauge field for which the density is given by a power of the Maxwell Lagrangian. In d-dimensions the action of Maxwell field is shown to enjoy the conformal invariance if the power is chosen as d/4. We present a class of charge rotating solutions in Einstein-conformally invariant Maxwell gravity in the presence of a cosmological constant. These solutions may be interpreted as black brane solutions with inner and outer event horizons or an extreme black brane depending on the value of the mass parameter. Since we are considering power of the Maxwell density, the black brane solutions exist only for dimensions which are multiples of four. We compute conserved and thermodynamics quantities of the black brane solutions and show that the expression of the electric field does not depend on the dimension. Also, we obtain a Smarr-type formula and show that these conserved and thermodynamic quantities of black branes satisfy the first law of thermodynamics. Finally, we study the phase behavior of the rotating black branes and show that there is no Hawking–Page phase transition in spite of conformally invariant Maxwell field.  相似文献   

8.
We study the entropy of the Gibbons-Maeda-Garfinkle-Horowitz-Strominger (GMGHS) charged black hole, originated from the effective action thatemerges in the low-energy of string theory, beyond semiclassical approximations. Applying the properties of exact differentials for three variables to the first law thermodynamics we derive the quantum correctionsto the entropy of the black hole. The leading (logarithmic) and non leading corrections to the area law are obtained.  相似文献   

9.
In this paper we study the first law of thermodynamics for the (2+1)-dimensional rotating charged BTZ black hole considering a pair of thermodynamical systems constructed with the two horizons of this solution. We show that these two systems are similar to the right and left movers of string theory and that the temperature associated with the black hole is the harmonic mean of the temperatures associated with these two systems.  相似文献   

10.
The Generalized Uncertainty Principle and Black Hole Remnants   总被引:1,自引:0,他引:1  
In the current standard viewpoint small black holes are believed to emit black body radiation at the Hawking temperature, at least until they approach Planck size, after which their fate is open to conjecture. A cogent argument against the existence of remnants is that, since no evident quantum number prevents it, black holes should radiate completely away to photons and other ordinary stable particles and vacuum, like any unstable quantum system. Here we argue the contrary, that the generalized uncertainty principle may prevent their total evaporation in exactly the same way that the uncertainty principle prevents the hydrogen atom from total collapse: the collapse is prevented, not by symmetry, but by dynamics, as a minimum size and mass are approached.  相似文献   

11.
In this paper we study the first law of thermodynamics for the (2+1)-dimensional rotating charged BTZ black hole considering a pair of thermodynamical systems constructed with the two horizons of this solution. We show that these two systems are similar to the right and left movers of string theory and that the temperature associated with the black hole is the harmonic mean of the temperatures associated with these two systems.  相似文献   

12.
If TeV-scale gravity describes nature, black holes will be produced in particle accelerators, perhaps even with impressive rates at the Large Hadron Collider. Their decays, largely via the Hawking process, will be spectacular. Black holes also would be produced in cosmic ray collisions with our atmosphere, and their showers may be observable. Such a scenario means the end of our quest to understand the world at shorter distances, but may represent the beginning of the exploration of extra dimensions.  相似文献   

13.
We investigate the Hawking radiation of a GMGHS charged black hole from the heterotic string scenario by the massive particles turmeling method. We consider the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles and show that the tunneling rate is related to the change of Bekenstein- Hawking entropy and the derived emission spectrum does not deviate from the pure thermal spectrum of Schwrzschild's black hole.  相似文献   

14.
Thermal Hawking emission from black holes is a remarkable consequence of the unification of quantum physics and gravitation. Black holes of a few solar masses are the only ones which can form in the present universe. However, having temperatures million times smaller than the ambient cosmic background radiation they cannot evaporate. Primordial black holes of M 1014g would evaporate over a Hubble age and considerable ongoing effort is on to detect such explosions. I point out, however, that at the early universe epochs when such black holes form, the ambient radiation temperature considerably exceeds their corresponding Hawking temperature. This results in rapid continual accretion (absorption) of ambient radiation by these holes. Consequently by the end of the radiation era their masses grow much greater so that their lifetimes (scaling as M3) would now be enormously greater than the Hubble age implying undetectably small emission.  相似文献   

15.
It has been known that a B=2 skyrmion is axially symmetric. We consider the Skyrme model coupled to gravity and obtain static axially symmetric regular and black hole solutions numerically. Computing the energy density of the skyrmion, we discuss the effect of gravity to the energy density and baryon density of the skyrmion.  相似文献   

16.
The Einstein-Proca equations, describing a spin-1 massive vector field in general relativity, are studied in the static spherically-symmetric case. The Proca field equation is a highly nonlinear wave equation, but can be solved to good accuracy in perturbation theory, which should be very accurate for a wide range of mass scales. The resulting first order metric reduces to the Reissner-Nordström solution in the limit as the range parameter goes to zero. The additional terms in the g 00 metric coefficient are positive, as in Reissner-Nordström, in agreement with previous numerical solutions, and hence involve naked singularities.  相似文献   

17.
Using adiabatic invariance and the Bohr-Sommerfeld quantization rule we investigate the entropy spectroscopy of two black holes of heterotic string theory,the charged GMGHS and the rotating Sen solutions.It is shown that the entropy spectrum is equally spaced in both cases,identically to the spectrum obtained before for Schwarzschild,Reissner-Nordström and Kerr black holes.Since the adiabatic invariance method does not use quasinormal mode analysis,there is no need to impose the small charge or small angular momentum limits and there is no confusion on whether the real part or the imaginary part of the modes is responsible for the entropy spectrum.  相似文献   

18.
Are higher-dimensional black holes uniquely determined by their mass and spin? Do non-spherical black holes exist in higher dimensions? This essay explains how the answers to these questions have been supplied by the discovery of a new five-dimensional black hole solution. The existence of this solution implies that five-dimensional black holes exhibit much richer dynamics than their four-dimensional counterparts.  相似文献   

19.
P S Joshi  J V Narlikar 《Pramana》1982,18(5):385-396
The usual definition of a black hole is modified to make it applicable in a globally hyperbolic space-time. It is shown that in a closed globally hyperbolic universe the surface area of a black hole must eventually decrease. The implications of this breakdown of the black hole area theorem are discussed in the context of thermodynamics and cosmology. A modified definition of surface gravity is also given for non-stationary universes. The limitations of these concepts are illustrated by the explicit example of the Kerr-Vaidya metric.  相似文献   

20.
Modified by a logarithmic term, the non-linear electrodynamics (NED) model of the Born–Infeld (BI) action is reconsidered. Unlike the standard BI action, this choice provides interesting integrals of the Einstein-NED equations. It is found that the spherical matching process for a regular black hole entails indispensable surface stresses that vanish only for a specific value of the BI parameter. This solution represents a classical model of an elementary particle whose radius coincides with the horizon. In flat spacetime, a charged particle becomes a conducting shell with a radius proportional to the BI parameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号